USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Water Pumps with Engine

Comparison AL-KO BMP 14000 vs DaiShin SCR-252M2

Add to comparison
AL-KO BMP 14000
DaiShin SCR-252M2
AL-KO BMP 14000DaiShin SCR-252M2
from $178.61 up to $235.52
Outdated Product
from $231.92 up to $265.26
Outdated Product
TOP sellers
Suitable forclean water
clean water /slightly polluted/
Specs
Maximum performance
14000 L/h /maximum/
7200 L/h /maximum/
Maximum head
36 m /maximum/
35 m /maximum/
Pump typecentrifugalcentrifugal
Suction typeself-primingself-priming
Suction height6 m8 m
Maximum particle size8 mm
Maximum liquid temperature35 °С
Suction systemsingle-stagesingle-stage
Outlet size1"
1" /25 mm/
Inlet hole size1"
1" /25 mm/
Engine
Maximum power1200 W2940 W
Power sourcepetrolpetrol
Engine specifications97 cm³, 1.6 hp, 4-stroke, single-cylinder118 см³, 4 л.с, 2-х тактный, одноцилиндровый
Fuel tank volume1.4 L1.7 L
General specs
Country of originGermanyJapan
Dimensions425x310x405 mm314х224х336 mm
Weight13 kg5.1 kg
Added to E-Catalogapril 2015november 2014

Maximum performance

The maximum volume of water that the device can pump in a certain amount of time. It is one of the key specs of any pump because characterizes the volume of water with which the device can work. At the same time, it does not always make sense to pursue maximum performance — after all, it significantly affects the dimensions and weight of the unit.

Some formulas allow you to derive optimal performance values for different situations. So, if the pump is designed to supply water to water intake points, its minimum required performance should not be lower than the highest total flow rate; if desired, a margin of 20-30% can be added to this value. And for sewer models (see "Suitable for"), everything will depend on the volume of wastewater. More detailed recommendations for choosing a pump depending on performance can be found in special sources.

Maximum head

The maximum head generated by the pump. This parameter is most often indicated in meters, by the height of the water column that the unit can create — in other words, by the height to which it can supply water. You can estimate the pressure created by the pump using a simple formula: every 10 m of head corresponds to a pressure of 1 bar.

It is worth choosing a pump according to this parameter, taking into account the height to which it should supply water, as well as adjusting for losses and the need for pressure in the water supply. To do this, it is necessary to determine the difference in height between the water level and the highest point of water intake, add another 10 to 30 m to this figure (depending on the pressure that needs to be obtained in the water supply), and multiply the result by 1.1 — this will be the minimum pressure required.

Suction height

The largest difference between the height of the pump and the height of the water level at which the pump can provide normal suction. Without special devices, the maximum value of this parameter is 7-8 m — this is due to the physics of the process. However, when using an ejector (see below), the suction height can be increased several times.

Maximum particle size

The largest particle size that the pump can handle without problems. This size is the main indicator that determines the purpose of the device (see above); and in general, the larger it is, the more reliable the device, the lower the risk of damage if a foreign object enters the suction line. If the risk of the appearance of too large mechanical impurities is still high, additional protection can be provided with filters or grids at the inlet. However, such a measure should be considered only as a last resort, because from constant exposure to solid particles, the grids become clogged and deformed, which can lead to both clogging of the line and filter breakthrough.

Maximum liquid temperature

The highest temperature of water at which the pump is capable of operating normally. Usually, in most models this parameter is 35-40 °C — at high temperatures it is difficult to ensure effective cooling of the engine and moving parts, and in fact, such conditions are rare.

Maximum power

Rated power of the pump motor. The more powerful the engine, the higher the performance of the unit, usually, the greater the pressure, suction height, etc. Of course, these parameters largely depend on other features (primarily the pump type, see above); but models similar in design can be compared in terms of power.

Note that high power, usually, increases the size, weight and cost of the pump, and also implies high costs of electricity or fuel (see "Power source"). Therefore, it is worth choosing a pump according to this parameter taking into account the specific situation; more detailed recommendations can be found in special sources.

Engine specifications

The main characteristics of the internal combustion engine (see "Power") installed in the motor pump. This paragraph may include, in particular, the following points:

— Volume. The working volume of the cylinder (cylinders) of the engine. Larger displacement generally provides more power, but fuel consumption rises accordingly.

— Power. The power of gasoline and diesel engines is traditionally indicated in horsepower. The meaning of this parameter is the same as that of the nominal power (see above), indicated in watts. And some units can be easily converted into others: 1 hp. approximately equal to 735 watts. However, the designation in horsepower is more convenient for evaluating and comparing internal combustion engines.

— The number of cycles. In modern units with internal combustion engines, including motor pumps, 2-stroke or 4-stroke engines can be used. The first option is characterized by higher power and lower cost; its disadvantages are a high noise level and the need to refuel with a fuel-oil mixture, which is not very convenient. 4-stroke internal combustion engines are quite complex in design and expensive, but they are easier to operate, and they make less noise. Note that most 2-stroke engines are gasoline, diesel engines of this type are practically not found today.

— The number of cylinders. The presence of several cylinders contributes to the uniform rotation of the motor shaft. On the other hand, this feature signific...antly affects the size and weight, while uniformity for pumps is not critical. Therefore, the vast majority of engines in modern motor pumps are single-cylinder.

— Launch method. The engine can be started both manually and with an electric starter. For the first method, see above; manual start is more difficult (usually you need to pull a special cable with considerable effort, often several times), but it is more reliable, because. does not depend on the battery.

— Cooling type. In modern internal combustion engines, two types of cooling are used — liquid (water) and air. Specifically, in motor pumps, the vast majority of devices use the second option, because. air systems are much simpler and cheaper, and their efficiency, although lower than that of water systems, is still quite sufficient.

Fuel tank volume

The volume of the fuel tank in the water pump with an internal combustion engine (see "Power source"). Knowing this parameter and fuel consumption, it is possible to determine the maximum operating time of the unit on a single refill. Of course, the larger the tank, the longer the pump can work without refuelling, all other things being equal; on the other hand, a large capacity significantly affects the dimensions and weight of the device.

Country of origin

Country of origin of the brand under which the pump is marketed.

There are many stereotypes related to how the origin of goods from a particular country affects their quality. However, these stereotypes are unfounded. Firstly, this paragraph does not indicate the actual place of production of the unit, but the "homeland" of the trademark (or the location of the manufacturer's headquarters); production facilities may be located in another country. Secondly, the actual quality of the product depends not so much on geography, but on the organization of processes within a particular company. So when choosing, it is best to focus not so much on the "nationality" of the pump, but on the overall reputation of a particular brand. And paying attention to the country of origin makes sense if you fundamentally want (or do not want) to support a manufacturer from a certain state.
AL-KO BMP 14000 often compared