USA
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison Enermax ETS-T50A-BVT vs Deepcool CAPTAIN 120 EX

Add to comparison
Enermax ETS-T50A-BVT
Deepcool CAPTAIN 120 EX
Enermax ETS-T50A-BVTDeepcool CAPTAIN 120 EX
from $91.51 
Outdated Product
from $87.94 
Outdated Product
TOP sellers
Main specs
Featuresfor CPUfor CPU
Product typeair coolerliquid cooling
Air flow directionsideways (dispersion)
Max. TDP250 W150 W
Fan
Number of fans11
Fan size120 mm120 mm
Bearingmagnetic centringhydrodynamic
Min. RPM500 rpm
Max. RPM1800 rpm1800 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow62.32 CFM76.52 CFM
Static pressure3.31 mm H2O
MTBF160 K hours50 K hours
replaceable
Min noise level17 dB
Noise level25 dB31 dB
Power source4-pin4-pin
Radiator
Heat pipes5
Heatpipe contactstraight
Heatsink materialaluminium / copperaluminium
Plate materialaluminium
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4 /clarify compatibility/
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
 
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Liquid cooling system
Heatsink size120 mm
Pump size93x93x85 mm
Pump rotation speed2100 rpm
Pump MTBF120 K hours
Pipe length310 mm
General
Lighting
 /RGB/
 /pumps/
Mount typebilateral (backplate)bilateral (backplate)
Dimensions139x112x160 mm
154x120x52 mm /radiator/
Height160 mm
Weight
860 g /without fan/
Added to E-Catalogfebruary 2018april 2017

Product type

- Fan. A classic fan is a motor with blades that provides air flow; This also includes sets of several fans. In any case, such devices should not be confused with coolers (see below) - fans do not have radiators. Almost all solutions of this type are designed for cases (see “Purpose”), only a few models are designed for “airflow” hard drives or chipsets.

Reversible fan. A type of fan (see above) in which the impeller is turned in the opposite direction. This was done so that when placed behind the “system unit” case or in its upper part, it was possible to give the assembly an aesthetic appearance - the reversible fan will be installed with the front side for air airflow. Such solutions are used mainly for the side walls of “aquarium” type housings.

Radiator. Design made of heat-conducting material with a special ribbed shape. This shape provides a large area of contact with air, and as a result, good heat transfer. Radiators do not consume energy and operate absolutely silently, but are not very efficient. Therefore, in their pure form they are extremely rare, and such models are intended either for low-power PC components with low heat dissipation (energy-efficient processors, hard drives, etc.), or for assembling an active cooler (see below) from a separately purchased fan and radiator (this option is found among solutions for video cards).
<...br> — Active cooler. A device in the form of a radiator with a fan installed on it; Moreover, in many models, the radiator does not directly contact the cooled component, but is connected to it using heat pipes, while air is blown out to the side (the so-called tower layout, especially popular in systems for CPU; for more details, see “Blowing air flow”) . In any case, such designs, on the one hand, are relatively simple and inexpensive, on the other hand, they are quite effective, making them an extremely popular type of CO. In particular, it is in this format that most solutions for processors are produced (including tower and boxed ones), and in general, coolers can be used for almost any component of the system, with the exception of the case.

- Water cooling. Water cooling systems consist of three main parts: a water block in direct contact with the component to be cooled (usually the processor), an external cooler, and a pump (either separate or built into the cooler). These components are connected by hoses through which water (or another similar coolant) circulates - it provides heat transfer. And the cooling unit is usually a cooler - a system of fans and radiators that dissipates thermal energy into the surrounding air. Water systems are noticeably more efficient than active coolers (see above); they are suitable even for very powerful and “hot” CPUs, which traditional coolers have difficulty coping with. On the other hand, this type of cooling is quite cumbersome and difficult to install, and is not cheap.

LSS kit. Kit for self-assembly of a liquid (water) cooling system. In this case, it is understood that the entire system is supplied in the form of a set of parts, from which the customer must assemble the finished life-support system himself. Its installation is more complex than traditional water systems. Therefore, there are only a few LSS kits produced, and they are designed mainly for enthusiasts who like to experiment with the design and design of their PCs.

- Backplate. A solid metal plate used as a fastening element for the cooling system. Serves to prevent bending of the motherboard or video card when deploying a heat dissipation system, and also provides passive cooling of the rear side of tech modules with which it is adjacent.

— Water block VRM. A water block that provides effective cooling of the elements of the VRM (Voltage Regulator Module) power subsystem of the central processor.

CPU water block. A copper or nickel heat exchanger designed to remove heat from the CPU through the coolant. Used in water cooling systems for computers. Most often, processor water blocks are equipped with mounts for specific processor platforms.

- GPU water block. Liquid cooling units for maximum efficient heat removal from the video card. Similar solutions are produced for a specific group of video cards on one graphics processor. GPU water blocks consist of two main parts: the top, where a copper alloy heat sink is located, a plastic cover with liquid channels and a casing to give rigidity to the structure, as well as a metal plate at the bottom of the block on the back side of the printed circuit board.

— A set of fastenings. A set of fasteners for mounting cooling systems on elements of a computer motherboard. Available for specific socket versions.

Air flow direction

The direction in which the active cooler (see "Type") airflow exits.

This parameter is relevant primarily for models used with processors, but the options can be as follows:

Sideways (scattering). Operation format typical for coolers of the so-called tower design. In these models, the fan is mounted perpendicular to the substrate in contact with the processor, due to which the airflow moves parallel to the motherboard. This ensures maximum efficiency: the heated air does not return to the processor and other system components, but is dissipated in the case (and almost immediately goes outside if the computer has at least one case fan). The main disadvantage of this option is the large height of the structure, which can make it difficult to place it in some system units. However, in most cases this point is not fundamental — especially when it comes to a powerful cooling system designed for an advanced system with a performant "hot" processor. So, it is side dissipation that is the most popular option nowadays — especially in coolers with a maximum TDP of 150 W and higher (although more modest models often use this layout).

Down (to the motherboard). This format of operation allows you to "lay" the fan with a heatsink flat on the motherboard, significantly reducing the height of the entire cooler (compared to models using side blowing). On the other hand, this format of...work is not very efficient — after all, before dissipating through the case, hot air again blows over the board with the processor. So nowadays, this option is relatively rare, and mainly in low-power coolers with an acceptable TDP of up to 150 W. And you should pay attention to such models mainly when there is little space in the case and a small cooler height is more important than high efficiency.

Max. TDP

The maximum TDP provided by the cooling system. Note that this parameter is indicated only for solutions equipped with heatsinks (see "Type"); for separately made fans, the efficiency is determined by other parameters, primarily by the air flow values (see above).

TDP can be described as the amount of heat that a cooling system is able to remove from a serviced component. Accordingly, for the normal operation of the entire system, it is necessary that the TDP of the cooling system is not lower than the heat dissipation of this component (heat dissipation data is usually indicated in the detailed characteristics of the components). And it is best to select coolers with a power margin of at least 20 – 25% — this will give an additional guarantee in case of forced operation modes and emergency situations (including clogging of the case and reduced air exchange efficiency).

As for specific numbers, the most modest modern cooling systems provide TDP up to 100 W, the most advanced — up to 250 W and even higher.

Bearing

The type of bearing used in the cooling fan(s).

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is rather low — rolling, and even more so the hydrodynamic and magnetic principle of operation (see below), provide much less friction.

Rolling. They are also called "ball bearings", since the "intermediaries" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices (see below). Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

Hydrodynamic. Bearings of this type are filled with a special liquid; when rotate...d, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Min. RPM

The lowest speed at which the cooling fan is capable of operating. Specified only for models with speed control (see below).

The lower the minimum speed (with the same maximum) — the wider the speed control range and the more you can slow down the fan when high performance is not needed (such a slowdown allows you to reduce energy consumption and noise level). On the other hand, an extensive range affects the cost accordingly.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

MTBF

The total time that a cooling fan is guaranteed to run before it fails. Note that when this time is exhausted, the device will not necessarily break — many modern fans have a significant margin of safety and are able to work for some more period. At the same time, it is worth evaluating the overall durability of the cooling system according to this parameter.

Min noise level

The lowest noise level produced by the cooling system during operation.

This parameter is indicated only for those models that have capacity control and can operate at reduced power. Accordingly, the minimum noise level is the noise level in the most “quiet” mode, the volume of work, which this model cannot be less than.

These data will be useful, first of all, to those who are trying to reduce the noise level as much as possible and, as they say, “fight for every decibel”. However, it is worth noting here that in many models the minimum values are about 15 dB, and in the quietest — only 10 – 11 dB. This volume is comparable to the rustling of leaves and is practically lost against the background of ambient noise even in a residential area at night, not to mention louder conditions, and the difference between 11 and 18 dB in this case is not significant for human perception. A comparison table for sound starting from 20 dB is given in the "Noise level" section below.
Deepcool CAPTAIN 120 EX often compared