Screen type
The technology by which the matrix of the laptop is made.
Matrices of the
TN+film,
IPS and
*VA types are most widely used nowadays; less common are screens like
OLED,
AMOLED,
QLED,
miniLED, as well as more specific solutions like LTPS or IGZO. Here is a more detailed description of all these options:
— TN-film. The oldest, simplest and most inexpensive technology currently in use. The key advantages of this type of display are low cost and excellent response time. On the other hand, such matrices are not of high image quality: brightness, colour fidelity and viewing angles of TN-film screens are at an average level. These indicators are quite enough for working with documents, web surfing, most games, etc.; however, for more serious tasks that require a high-quality and reliable picture (for example, design or photo / video colour correction), such screens are practically unsuitable. Thus, TN-film matrices are relatively rare nowadays, mainly among low-cost laptops; more advanced devices are equipped with better screens, most often IPS.
— IPS (In-Plane Switching). The most popular type of matrix for laptops in the middle and top price range; however, it is increasingly common in low-cost models, and for trans
...formers and 2-in-1 devices (see "Type") it is almost a standard option. Screens of this type are noticeably superior to TN-film in terms of the quality of the “picture”: they provide a bright, reliable and rich image that hardly changes when the viewing angle changes. In addition, this technology allows to achieve extensive colour gamuts in various special standards (see below) and is suitable for creating displays with advanced features such as HDR support or Pantone / CalMAN certification (also see below). Initially, IPS matrices were expensive and had a slow response time; however, nowadays, various modifications of this technology are used, in which these shortcomings are fully or partially compensated. At the same time, different modifications may differ in practical characteristics: for example, some are created based on the maximum reliability of the picture, others differ in affordable cost, etc. So it's ok to clarify the actual characteristics of the IPS screen before buying — especially if you plan to use a laptop for specific applications where image quality is critical.
— *V.A. Various modifications of matrices of the "Vertical Alignment" type: MVA, PVA, Super PVA, ASVA, etc. The differences between these technologies are mainly in the name and the manufacturer. Initially, matrices of this type were developed as a compromise between IPS (high-quality, but expensive and slow) and TN-film (fast, inexpensive, but modest in image quality). As a result, *VA screens turned out to be more affordable than IPS and more advanced than TN-film — they have good colour reproduction, deep blacks and wide viewing angles. At the same time, it is worth noting that the colour balance of the picture on such a display changes somewhat when the viewing angle changes. This makes it difficult to use *VA matrices in professional colour work. In general, this option is designed mainly for those who do not need perfect colour accuracy and at the same time want to see a bright and colorful image.
— OLED. Matrices based on the so-called organic light-emitting diodes. The key feature of such displays is that in them each pixel is a source of light in itself (unlike classic LCD screens, in which the backlight is made separately). This design principle, combined with a number of other solutions, provides excellent brightness, contrast and colour reproduction, rich blacks, the widest possible viewing angles and a small thickness of the screens themselves. On the other hand, laptop OLED matrices for the most part turn out to be quite expensive and “gluttonous” in terms of energy consumption, and they wear out unevenly: the more often and brighter a pixel glows, the faster it loses its working properties (however, this phenomenon becomes noticeable only after several years of intensive use). In addition, for a number of reasons, such screens are considered poorly suited for gaming applications. In light of all this, sensors of this type are rare these days — mostly in individual high-end laptops designed for professional colour work and with appropriate features such as HDR support, wide colour gamut and/or Pantone / CalMAN certification (see below).
— AMOLED. A kind of matrices on organic light-emitting diodes, created by Samsung (however, it is also used by other manufacturers). In terms of its main features, it is similar to other types of OLED matrices (see above): on the one hand, it allows you to achieve excellent image quality, on the other hand, it is expensive and wears out unevenly. At the same time, AMOLED screens have even more advanced colour performance combined with better power optimization. And the low prevalence of this technology is mainly due to the fact that it was originally created for smartphones and only recently began to be used in laptops (since 2020).
— MiniLED. Screen backlight system on a substrate of miniature LEDs with a size of about 100-200 microns (µm). On the same display plane, it was possible to increase the number of LEDs several times, and their array is placed directly behind the matrix itself. The main advantage of miniLED technology can be called a large number of local dimming zones, which in total gives improved brightness, contrast and more saturated colors with deep blacks. MiniLED screens unlock the potential of High Dynamic Range (HDR) technology, suitable for graphic designers and digital content creators.
— QLED. Matrices on "quantum dots" with a redesigned LED backlight system. In particular, it provides the replacement of multilayer colour filters with a special thin-film coating of nanoparticles. Instead of traditional white LEDs, QLED panels use blue ones. As a result, a set of design innovations makes it possible to achieve a higher brightness threshold, colour saturation, improve the quality of colour reproduction in general, while reducing the thickness of the screen and reducing power consumption. The reverse side of the QLED-matrices coin is an expensive cost.
— PLS. A type of matrix developed as an alternative to the IPS described above and, according to some sources, is one of its modifications. Such matrices are also characterized by high colour rendering quality and good brightness; in addition, the advantages of PLS include good suitability for high-resolution screens (due to high pixel density), as well as lower cost than most IPS modifications, and low power consumption. At the same time, the response speed of such screens is not very high.
— LTPS. An advanced type of TFT-matrix, created on the basis of the so-called. low temperature polycrystalline silicon. Such matrices have high colour quality, and are also well suited for screens with high pixel density — in other words, they can be used to create small displays with very high resolution. Another advantage is that part of the control electronics can be built directly into the matrix, reducing the overall thickness of the screen. On the other hand, LTPS matrices are difficult to manufacture and expensive, and therefore are found mainly in premium laptops.
— IGZO. An LCD technology that uses a semiconductor material based on indium, gallium, and zinc oxides (as opposed to more traditional amorphous silicon). This technology provides fast response time, low power consumption and very high colour quality; it also achieves high pixel densities, making it well-suited for ultra-high resolution screens. However, while such displays in laptops are extremely rare. This is explained both by the high cost and by the fact that rather rare metals are used in the production of IGZO matrices, which makes large-scale production difficult.Surface treatment
—
Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.
—
Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.
—
Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in
...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.Brightness
The maximum brightness that a laptop screen can provide.
The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.
As for specific values, many modern laptops have a brightness of
250 – 300 nt and even
lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least
300 – 350 nt. And in the most advanced models, this parameter can be
350 – 400 nt and even
more.
Contrast
The contrast of the screen installed in the laptop.
Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.
Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.
As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).
Total threads
The number of threads supported by the laptop processor.
A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).
Passmark CPU Mark
The result shown by the laptop processor in the Passmark CPU Mark test.
Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).
SuperPI 1M
The result shown by the laptop processor in the SuperPI 1M test.
The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).
Video memory
The amount of native video memory installed in the laptop's graphics card. Only discrete video adapters and their advanced varieties like SLI or Dual Graphics have such memory (see "Video card type").
The more memory, the more powerful the graphics card and the better it can handle complex graphics. Of course, the specific capabilities of the adapter depend on a number of other parameters (primarily the characteristics of the graphics processor); however, the difference in the amount of memory, as a rule, is quite consistent with the difference in the overall level. In terms of specific numbers, solutions with
2 GB are entry-level,
4 GB and
6 GB are intermediate, and
8 GB - to advanced, and
12 GB and
16 GB can be found in top-end gaming laptops and high-end workstations.
3DMark06
The result shown by the laptop's graphics card in 3DMark06.
This test primarily determines how well a graphics card handles intensive workloads, in particular, with detailed 3D graphics. The test result is indicated in points; the more points, the higher the performance of the video adapter. Good 3DMark06 scores are especially important for
gaming laptops and advanced workstations. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.