USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Dehumidifiers

Comparison Ballu BDM-30L vs Mitsubishi Electric MA-E20BG-R1

Add to comparison
Ballu BDM-30L
Mitsubishi Electric MA-E20BG-R1
Ballu BDM-30LMitsubishi Electric MA-E20BG-R1
from $333.56 up to $396.84
Outdated Product
from $760.00 up to $868.76
Outdated Product
TOP sellers
Main
Air cleaning. Large informative display. Airflow direction adjustment. Many operating modes. Shutdown timer. Excellent mobility. Build quality.
Main functionhouseholdhousehold
Typecondensingcondensing
Installationfloorfloor
Specs
Capacity30 L/day20 L/day
Power consumption540 W275 W
Recommended room area42 m²
Power supplysingle-phase (230 V)single-phase (230 V)
Controlspush-buttonpush-button
Air flow180 m³/h
Dehumidifying operating range20 – 80 % Rh30 – 80 % Rh
Operating temperature range5 – 35 °C1 – 35 °C
Condensate tank volume5 L4.5 L
Noise level46 dB38 dB
RefrigerantR410AR134A
Features
Functions
hygrostat
fan speed adjustment
ionizer
timer
anti-freeze mode
air filter /preliminary and coal/
tank indicator
auto shutdown
hygrostat
 
 
timer
anti-freeze mode
air filter /preliminary and Silver Ion/
tank indicator
auto shutdown
General specs
Wheels
Display
Dimensions586x372x242 mm589x384x217 mm
Weight14.6 kg13.2 kg
Added to E-Catalogjuly 2015july 2015

Capacity

The nominal capacity of the dehumidifier is the maximum amount of moisture that the unit can remove from the air per day.

For efficient operation, the capacity of the dehumidifier must be no less than the amount of excess moisture that accumulates in the room during the same time. This amount can be calculated using special formulas or calculator programs. However, the results of such calculations are quite approximate, but they can be used in the selection, and for a full guarantee it is worth taking a performance margin of at least 10–20%. If desired, this margin can be more; but note that high performance significantly affects the price, dimensions and energy consumption of the dehumidifier.

As for specific values, entry-level models for small spaces provide less than 25 L/day. Indicators of 26 – 50 L/day can be called average, 51 – 75 L/day — above average; there are also many powerful professional units with a capacity of more than 75 L/day.

Power consumption

Power consumption of the dehumidifier in normal operation.

From a practical point of view, this characteristic is secondary — manufacturers select power in such a way as to provide the necessary operating parameters (performance, air flow, etc.), and when choosing, you should focus primarily on these parameters. However, certain practical points also depend on the power consumption. Firstly, only models of less than 3-3.5 kW can be connected to ordinary household outlets; higher power consumption will require either a 400 V supply (see Power supply) or a direct connection to the panel. However, even power of more than 2 kW is rare in modern dehumidifiers — for most of these devices, the energy consumption is in the range from 500 to 1000 W or from 1000 to 2000 W, and in the most modest models it does not exceed 500 W at all. Secondly, power data may be required to calculate the load on the power grid. Such a need arises mainly for the selection of additional equipment — circuit breakers, AVR, UPS, etc.

Also, note that models with similar performance may differ in power consumption. However, a more economical dehumidifier often costs more, but with regular use, this difference pays off by reducing energy costs.

Recommended room area

The area of the room for which the device is designed. It is the maximum area that this model can effectively handle: the use in smaller rooms is quite acceptable, but the device simply does not have enough performance for a larger space. Also, note that the area is indicated based on a ceiling height of 2.5-3 m — the standard value for residential premises; with a higher ceiling height, the effective area decreases, and it can be recalculated using special formulas.

When choosing by area, it is worth taking a certain margin, but it should not be too large — otherwise, the device will be unnecessarily powerful, bulky and expensive.

Air flow

The maximum amount of air that a dehumidifier can pass through in an hour.

The choice for this parameter depends on the size of the room. It is believed that for effective operation, the dehumidifier must drive through itself an amount of air in an hour that exceeds the volume of the room by 3-4 times; and you can determine the volume of the room by multiplying the area by the height of the ceiling. For example, a 12 m² room with 2.5 m ceilings will hold 12*2.5=30 m³ of air; accordingly, for efficient operation in such a room, a dehumidifier with a capacity of 30*3=90 m³/h, and preferably 30*4=120 m³/h, is required. It is quite possible to choose a unit with a margin for airflow — unless you need to take into account that an increase in performance affects the price and energy consumption. But a too-low value of this parameter is undesirable: such a dehumidifier simply cannot effectively cope with its task.

As for specific figures, relatively low-power models produce up to 250 m³/h, equipment for 251–500 m³/h and 501–750 m³/h can be attributed to the average level, and many units are capable of processing more than 750 m³/h.

Dehumidifying operating range

The range of relative humidity (RH — relative humidity) of the ambient air, in which the dehumidifier is guaranteed to be able to cope with its task and at the same time perform at the level claimed by the manufacturer.

The wider this range — the more versatile the unit, the less likely it is to be in emergency conditions. At the same time, when choosing, it is worth considering the specifics of the application of the dehumidifier. Thus, dehumidifiers are initially designed for high humidity, but the ability to work at 100% relative humidity is not always required. For example, in the cold season, the air coming from the street is "drier" by itself when heated indoors (due to the increase in temperature, the relative humidity drops, although the actual amount of moisture in the air does not change), and even in wet weather, a dehumidifier with a limit of 80-90% may be enough. And the lower dehumidification limit directly depends on the tasks facing the device. If we are talking about living quarters, offices and other places where you need to create conditions that are pleasant for people, then you need to take into account that the most comfortable values for a person concerning humidity are 40-70%. Therefore, for such conditions, it makes no sense to specifically look for a device with a lower limit of less than 40%. But for specific tasks such as drying rooms during repairs, warehousing, etc. lower humidity levels may be needed.

Note that many model...s are quite capable of working outside the operating range, except that the performance may decrease. However, it does not hurt to clarify such an ability according to the official documentation.

Operating temperature range

The ambient temperature range in which the dehumidifier can operate normally. The wider this range, the more versatile the dehumidifier is, and the more diverse the conditions in which it can be used. Note that, in contrast to the humidity range (see above), going beyond the operating temperatures is fraught not only with loss of efficiency but also with serious malfunctions and even breakdowns. Therefore, it is worth choosing a unit according to this parameter in such a way that it is guaranteed to block possible fluctuations in the temperature of the air with which the dehumidifier is to work.

Note that most modern models are designed to operate at positive temperatures, with the lower limit being on average about 4–5 °C. The only type of dehumidifiers that can operate at temperatures below zero are adsorption dryers(see "Suitable for").

Condensate tank volume

The volume of the tank for collecting condensate (moisture removed from the air), provided in the design of the dehumidifier.

The larger the condensate tank, the slower it will fill up and the less often it will have to be emptied. It is especially important for high-performance units (see above). On the other hand, the volumetric tank has the appropriate dimensions, which affects the dimensions of the entire dryer. When evaluating the relationship between tank capacity and dehumidifier performance, note that the device rarely operates at full capacity. See "Dehumidification capacity" for more on this; here we note that if, for example, a dehumidifier with parameter of 24 L/day has a tank of 4 litres, this does not mean that the tank will necessarily be filled to the top every 4 hours. An alternative to tanks is the use of permanent condensate drainage systems; see "Features" for details.

Noise level

The maximum noise level produced by the dryer during operation. The lower this number, the more comfortable the use of the unit will be; this is especially true for residential premises. For workshops, warehouses and other similar places, the noise level is not so critical — this type of climate control equipment is often installed in places where there are almost no people, or in the vicinity of such noisy equipment, against which the noise from the dehumidifier can simply be lost. However, for non-residential premises, data on the noise can be useful — for example, to assess the need for special ear protection and other labour protection measures.

Note that this parameter is measured in decibels, and this is a non-linear value: for example, a change of 3 dB approximately corresponds to an increase/decrease in power by 2 times, by 10 dB — by 10 times, etc. Therefore, to assess the noise level, it is easiest to use comparative tables. Here is a simplified table for the range that most modern dehumidifiers fall into.

35 dB — muffled conversation;
40 dB — quiet conversation; the maximum noise level allowed in residential premises during the daytime;
45 — 50 dB — conversation in a normal tone;
55 dB — background sound in the office without special noise sources;
60 dB — loud conversation;
65 dB — city street with average traffic intensity;
70 dB — a conversation of several people in raised tones.

Refrigerant

The type of refrigerant used in the dehumidifier.

A refrigerant is a special substance (most often freon), which circulates through the cooling circuit in dehumidifiers with a condensing principle of operation (and these are all varieties, except for adsorption ones — see "Suitable for"). This substance provides the removal of excess heat generated during condensation of moisture. The type of refrigerant primarily determines the technical features of its application, such as the possibility of partial replacement and the requirements for the strength of the cooling circuit.

In modern dryers, you can mainly find brands of refrigerants such as R22, R407C, R410A, R134A, R290 and R32. Here is their general description:

— R22. The most "old" of the varieties of refrigerant found nowadays. It is distinguished by low cost, low operating pressure (which has a positive effect on the reliability and price of the cooling circuits themselves) and uniformity of composition, which allows, in case of a refrigerant leak, not to change it entirely, but simply to replenish the system with the required amount of liquid. However, R22 is environmentally unsafe (mainly for the ozone layer), which is why it is gradually being replaced by more advanced compounds.<...br>
— R32. A fairly advanced refrigerant that combines three key advantages: efficiency, environmental friendliness and uniformity. Dehumidifiers with R32 can be made quite compact and, at the same time, performant; this substance does not destroy the ozone layer and does not have a significant effect on global warming. The main disadvantage of models with this type of refrigerant is the high price.

— R407C. A refrigerant designed as a safe alternative to R22; does not affect the ozone layer. At the same time, such a composition is much more expensive; its working pressure is slightly higher, which requires a greater strength of the cooling circuit (although not as high as for R410A); and polyester oil used with R407C tends to absorb moisture and lose properties. In addition, this refrigerant is zeotropic (heterogeneous in composition): its components have different boiling points and evaporation rates. As a result, even with a small leak, the composition of the refrigerant and its properties change, and the situation can be corrected only by a complete replacement of freon.

— R410A. Another "green" alternative to R22. Unlike R407C, it is azeotropic — it consists of components with the same evaporation characteristics; so that in the event of a leak, the ratio of these components does not change, in which case refilling of the circuit is allowed instead of a complete replacement of freon. On the other hand, R410A is characterized by high operating pressure, which puts serious demands on the strength and reliability of the cooling circuit and increases its cost; and the refrigerant itself is quite expensive.

— R454C. Hydrofilin-based refrigerant is considered environmentally friendly and environmentally friendly, positioned as another option to replace the outdated R22 and an alternative to R407C. The composition is a mixture of R32 and R1234YF.

— R134A. One of the modern freons with advanced properties. It is completely homogeneous, like R22, but at the same time, it is safe for the ozone layer and is characterized by a low coefficient of influence on global warming. The disadvantage of this refrigerant is its traditional — high cost; in addition, it uses polyester oil, which is prone to moisture absorption.

— R290. Liquefied propane is used as a refrigerant. It has several advantages: non-toxic, environmentally friendly (zero impact on the ozone layer, minimal impact on global warming), homogeneous (i.e. does not require complete replacement in case of leakage, it is enough to replenish the missing amount), used with mineral oil, which is insensitive to moisture. In addition, propane has a low operating pressure, which simplifies the design of circuits and reduces their cost, as well as a low temperature at the outlet of the compressor, which contributes to efficiency. This refrigerant has two disadvantages: flammability and high compressor power requirements, which makes such units quite heavy and bulky. Therefore, despite all the advantages, R290 is used relatively rarely.
Ballu BDM-30L often compared
Mitsubishi Electric MA-E20BG-R1 often compared