Dark mode
USA
Choose city or write postal code
We couldn't pinpoint your city. Please select city to display stores and prices in your region.
Catalog   /   Photo   /   Camera Lenses

Comparison Nikon 70-300mm f/4.5-6.3G VR AF-P DX ED Nikkor vs Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor

Add to comparison
Nikon 70-300mm f/4.5-6.3G VR AF-P DX ED Nikkor
Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor
Nikon 70-300mm f/4.5-6.3G VR AF-P DX ED NikkorNikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor
from $396.95 
Expecting restock
from $410.00 up to $663.96
Outdated Product
Add to comparison
Nikon 70-300mm f/4.5-6.3G VR AF-P DX ED Nikkor
Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor
Nikon 70-300mm f/4.5-6.3G VR AF-P DX ED NikkorNikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor
from $396.95 
Expecting restock
from $410.00 up to $663.96
Outdated Product
User reviews
0
1
0
0
0
1
0
3
TOP sellers
Main
Fast and silent autofocus. Effective image stabilizer. Minimum distortion and chromatic aberration. Compact and lightweight for a telezoom.
Non-switchable stabilization system. Plastic bayonet mount.
Lens typetelephoto lenstelephoto lens
System
Nikon
Nikon
Mount
Nikon F
Nikon F
Specs
Focal length70 - 300 mm70 - 300 mm
Aperture valuef/4.5 - f/6.3f/4.5 - f/5.6
Viewing angles34° 20' - 8° 10'
Min. diaphragm3232
Minimum focus distance1.1 m1.5 m
Maximum zoom0.220.25
Design
Sensor sizeAPS-Cfull frame/APS-C
Autofocus drivestepper motorultrasonic drive motor
Internal focus
Image stabilization
Design (elements/groups)14 elements in 10 groups17 elements in 12 groups
Number of diaphragm blades79
Filter diameter58 mm67 mm
Dimensions (diameter/length)72х125 mm80x143.5 mm
Weight415 g745 g
Added to E-Catalogaugust 2016november 2006
When you make a purchase through links on our site, we may earn an affiliate commission.

Aperture value

Lens aperture is a characteristic that determines how much the lens attenuates the light flux passing through it. It depends on two main characteristics — the diameter of the active aperture of the lens and the focal length — and in the classical form is written as the ratio of the first to the second, while the diameter of the active aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8 or f/2.0. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.

Zoom lenses usually have different aperture values for different focal lengths. In this case, the characteristics indicate two aperture values, for the minimum and maximum focal lengths, respectively, for example: f / 4.5-5.6

The larger the aperture of the lens, the shorter shutter speeds it allows you to use when shooting. This is especially important when shooting fast-moving subjects, shooting in low light, etc. And if necessary, the light stream transmitted by the lens can be weakened using a diaphragm (see below).

Another point that directly depends on this indicator is the depth o...f field (the depth of space that is in focus when shooting). The higher the aperture, the smaller the depth of field, and vice versa. Therefore, shooting with artistic background blur (bokeh) requires high-aperture optics, and for a large depth of field, you have to cover the aperture.

Viewing angles

This parameter determines the size of the area of the scene being shot that falls into the frame. The wider the viewing angles, the larger the area the lens can capture in one shot. They are directly related to the focal length of the lens (see "Focal length"), and also depend on the size of the specific matrix with which the optics are used: for the same lens, the smaller the matrix, the smaller the viewing angles, and vice versa. On our website, in the characteristics of optics, viewing angles are usually indicated when used with the matrix for which the lens was originally designed (for more details, see "Matrix Size").

Minimum focus distance

Minimum focus distance (m) - the smallest distance from which you can focus on an object and take a photo. Usually it ranges from 20 cm for wide-angle lenses to several metres for telephoto. In the macro mode of the camera or with the help of macro lenses, this distance can be less than 1 centimeter.

Maximum zoom

The degree of magnification of the object being shot when using a lens for macro shooting (that is, shooting small objects at the maximum possible approximation, when the distance to the subject is measured in millimetres). The degree of magnification in this case means the ratio of the size of the image of the object obtained on the matrix of the camera to the actual size of the object being shot. For example, with an object size of 15 mm and a magnification factor of 0.3, the image of this object on the matrix will have a size of 15x0.3=4.5 mm. With the same matrix size, the larger the magnification factor, the larger the image size of the object on the matrix, the more pixels fall on this object, respectively, the clearer the resulting image, the more details it can convey and the better the lens is suitable for macro photography. It is believed that in order to obtain macro shots of relatively acceptable quality, the magnification factor should be at least 0.25 – 0.3.

Sensor size

The size of the matrix for which the lens was originally designed.

The formats (and sizes) of modern matrices can be indicated diagonally in inches (1/1.8", 1/2.3" — in this case, the conditional "Visicon" inch is taken, which is about 17 mm), according to the actual dimensions (13.2x8.8 mm) or by symbol (APS-C, full frame). In general, the larger the sensor, the more advanced and expensive it is.

Among modern lenses, solutions for such matrix formats are most popular, in ascending order of size: 4/3(17.3x13 mm, used in cameras of the Four Thirds and Micro Four Thirds standards), APS-C(23x15 mm with slight variations, SLR and MILC cameras of the middle class), full frame(36x24 mm, the size of a standard film frame — advanced DSLRs), big frame(anything larger than full frame — high-end professional cameras). Optics for other formats is somewhat less common.

Note that it is technically allowed to use with “non-native” sensors, however, in such cases, the performance characteristics of the optics will differ from those claimed. So, when installed on a smaller matrix (for example, a full frame lens on an APS-C camera), only a part of the image created by the lens will fall on such a sensor. As a result, the space that gets into the frame will be narrower, and the details in the frame will be larger, as if the focal...length of the lens has increased (although it has remained unchanged, only the matrix has changed). And when installed on a larger sensor, the covered space will increase, the detail will decrease; in some cases, the size of the “picture” provided by the lens may simply not be enough for the entire area of the matrix, and the pictures will be obtained with black space around the edges.

Autofocus drive

A type of drive that ensures the movement of lens structural elements during automatic focus. Currently, the following types can be used:

Ultrasonic motor. The most advanced type of drive to date. Ultrasonic motors are much faster than conventional motors, provide higher accuracy, consume less power and are virtually silent. However, their cost is quite high.

Stepper motor. Drive control focal length and zoom (zoom). This type of motor is used for the most part only in full-size digital cameras. Among the advantages of a stepper motor, one can note: high reliability and accuracy of operation; in addition, it does not require power supply to maintain focus and zoom. Of course, stepper motors are not without drawbacks. Among the minuses can be identified: slow speed and increased noise. Additionally, a stepper motor is characterized by large dimensions and a rather large weight, which physically does not allow this type of drive to be integrated into the optics of mobile phones and ultra-compact cameras.

— Motor. In this case, an electric motor of a traditional design is meant. Such drives are simple and, as a result, inexpensive. Their disadvantages are the relatively low speed of operation, as well as the noise produced during this; the latter can sometimes be critical — for example, when shooting wildlife. Recently, designers have been us...ing various tricks to neutralize these shortcomings, but in general, the characteristics of conventional motors still remain relatively modest.

— Is absent. The complete absence of an autofocus motor in the lens. Focus such optics can be carried out either by the “screwdriver” system, or strictly manually (for more details on both options, see below).

Design (elements/groups)

The number of elements (in fact, the number of lenses) included in the design of the lens, as well as the number of groups in which these elements are combined. Usually, the more elements provided in the design, the better the lens handles with distortions (aberrations) when light passes through it. On the other hand, numerous lenses increases the dimensions and weight of the optics, reduces light transmission (for more details, see "Aperture") and also puts forward increased requirements for the quality of processing, which affects the cost of the lens.

Number of diaphragm blades

The number of blades provided in the design of the diaphragm (for details, see "Minimum aperture"). In fact, this parameter is important when shooting scenes with pronounced bokeh (blurred background) and a small depth of field: the more petals the aperture has, the smoother the glare from out-of-focus objects will turn out, while with a small number of petals they can look like polygons. The number of aperture blades has almost no effect on other shooting parameters. Modern lenses have an average of 7-9 petals; the smoothing provided by them in most cases is considered quite sufficient.

Filter diameter

Thread diameter for installation on the filter lens. Light filters are devices for changing the parameters of the light flux entering the lens. They can be used for highlighting individual colours, coloring the entire image in one colour, darkening the image, correcting colour temperature and light balance, shooting in the infrared range, etc. Also, a light filter can play the role of protection against pollution. For successful installation on the lens, the diameter of the filter must match the diameter of the filter specified for this model of optics.
Nikon 70-300mm f/4.5-6.3G VR AF-P DX ED Nikkor often compared
Nikon 70-300mm f/4.5-5.6G VR AF-S IF-ED Zoom-Nikkor often compared