Detection range
The greatest distance at which a night vision device is capable of detecting individual objects.
The methods by which manufacturers determine this parameter may vary in detail, but the general principle is the same. Usually, the distance is indicated at which, with an illumination of 0.05 lux (a quarter of the moon) and a medium-contrast background, a rather large object can be seen — for example, a human figure with a height of about 170 cm is most often taken. of this object, but only to notice the very fact of its presence. Simply put, a detection range of, say, 200 m means that “something that looks like a person” can be seen in such a device at a distance of 200 m, but individual parts (head, hands) cannot be disassembled.
It is also worth noting that in fact this parameter is highly dependent on the characteristics of the situation. For example, a dark object on a very light background will be visible further, and on a dark one it may not be noticeable even up close; a similar phenomenon is observed for thermal imagers (see "Type"), only regarding the difference in temperature, and not in colours.
Optical magnification
The degree of image magnification that a night vision device is able to provide without digital image processing, solely due to the optical system. Such an increase is considered to be preferable to digital, because. it does not impair the clarity of the visible image; and for models based on image intensifier tubes (see "How it works"), this is generally the only available option.
Theoretically, the higher the magnification, the greater the detection range (see above), since a powerful increase allows you to see smaller objects. However, it does not always make sense to chase the maximum performance. The fact is that with increasing magnification, the angular field of view decreases and the minimum focus distance increases (see both below), which can create problems at close range. It is also worth noting that a high degree of magnification adversely affects the luminosity of the entire system — as a result, the actual detection range in complete darkness may be higher for a device with a lower magnification, because. it "catches" more light. Yes, and this parameter affects the cost accordingly.
Note that night vision devices, unlike classical binoculars and monoculars, most often have a fixed magnification. Models with the possibility of smooth adjustment are almost never found, and the only option is to use additional nozzles (see "Form factor").
Now on the market are night vision devices with the following optical zoom:
1x,
2 – 3x,
3.1 – 4x,
> 4xLens diameter
The diameter of the entrance lens that the lens of the night vision device is equipped with.
This parameter is one of the most important for any optical device, including night vision devices: the
larger the lens, the more light (or infrared radiation) enters it and the more sensitive the optics are, all other things being equal. The downside of this is an increase in the size, weight and cost of the device. In addition, do not forget that various tricks and additional technologies can be used in the design; therefore, by itself, a large lens is far from always an unambiguous indicator of a high class.
Angular field of view
The angle of view provided by a night vision device — that is, the angle between the lines connecting the observer's eye with the two extreme points of visible space. Wide viewing angles allow you to cover a large area, but the magnification factor (see above) is low; in turn, increasing the magnification leads to a decrease in the field of view.
Min. focus distance
The smallest distance to the observed object, at which it will be clearly visible through the night vision device. For normal use of night vision devices, it is necessary that this distance does not exceed the minimum expected distance to the objects in question; thus, it must be borne in mind that the higher the magnification factor (see above), the greater the focus distance, usually.
Exit pupil diameter
The diameter of the exit pupil created by the optical system of a night vision device. The exit pupil is called the projection of the front lens of the lens, built by optics and electronics in the region of the eyepiece; this image can be observed in the form of a characteristic light circle, if you look into the eyepiece not close, but from a distance of 30 – 40 cm.
The practical significance of this parameter is that for normal visibility it must be no less than the size of the pupil of a person looking into the eyepiece. The diameter of the human pupil can vary from 2-3 mm in bright light to 7-8 mm in the dark. Therefore, the larger the size of the exit pupil of the night vision device, the better the visibility, usually; this is especially true with a minimum amount of light, when the brightness of the image is low even when viewed through the device. On the other hand, this feature significantly affects the cost of the device.
More features
—
Video output. The presence in the NVD design of an output that allows you to broadcast an image from the device to an external device — for example, a laptop. Thus, you can view the "picture" on a large display and record video even if the night vision device does not have its own video recorder (see below); and if it is available, you can broadcast not only the image in real time, but also the captured materials. The specific video output interface may vary, but most often the signal is transmitted in analogue format.
—
Built-in video recorder. The presence of its own video recorder in the design of night vision devices. This allows you to use the device as a video camera, capturing everything that falls into the field of view on video; at the same time, such recording does not require additional equipment, in contrast to working with the video output described above. Video, usually, is stored on a memory card, and in many models it is possible to view the recording directly on the device itself.
—
Switching observation modes. The ability to switch observation modes means changing the colour features in the “picture” visible to the user. So, thermal imagers (see "Type") with this function support at least two classic modes "white hot" (the warmer the object, the brighter it is) and "black hot" (the warmer, the darker); in addition, additional format
...s can be provided, such as highlighting especially warm objects in red. In classic night vision devices, switching modes usually involves changing the colour tone of the visible image — for example, from classic green to red or black and white. And additional features may include, for example, a high contrast mode.
— Filling with gas. This feature implies the presence in the body of a filler in the form of an inert gas — for example, nitrogen — containing a minimum of water vapor. Such an environment does not oxidize the parts in contact with it, and the “dryness” of the filler also prevents fogging of the optics from the inside during temperature changes. Note that a kind of “side effect” of filling with gas is dust and water protection (see below), since the cases of such devices, by definition, must be airtight.
— Dust-, water protection. The presence in the design of night vision protection against dust and moisture, which prevents the ingress of contaminants on sensitive components. This feature is almost mandatory if you plan to actively use the device in the open air — for example, hunting. Note that the level of security can be different, and a high degree of protection usually means a high price. Therefore, when choosing, it makes sense to clarify the parameters claimed for each specific model and correlate them with your real needs.
— Impact protection. This function involves the use of various means — strong elastic body materials, shock absorption systems, etc. — which prevent damage to the sensitive components of the device during shock and shock. The degree and features of shock protection can vary markedly: usually, such models can withstand drops of at least 1.5 m, but in some cases this figure may be more. Note that for installation on firearms, special protection against recoil is required, which not all shock-resistant devices have.
— Angled eyecups. The presence of beveled eyecups (or one eyecup, in the case of monoculars — see "Type") in the design of night vision devices. The elongated part of the eyecup when working with the device is located on the outside of the eye, almost on the temple; due to this, it provides additional protection for the eye — primarily from extraneous "flare" that interferes with normal viewing of the image in the eyepiece. At the same time, such models do not go well with glasses: at best, the eyecup will have to be turned up, negating all its advantages, and in some devices this is not even possible.Weight
The total weight of the night vision device in the working position. If a helmet-mask is included in the kit (see above), its weight, usually, is also taken into account.
The large weight of the device makes it inconvenient to use — both when working with hands and when attached to a helmet-mask. On the other hand, with similar characteristics, lighter models will either cost more or have poor quality materials.