USA
Catalog   /   Photo   /   Binoculars & Telescopes   /   Binoculars & Monoculars

Comparison BRESSER Hunter 10x50 vs Nikon Aculon A211 10x50

Add to comparison
BRESSER Hunter 10x50
Nikon Aculon A211 10x50
BRESSER Hunter 10x50Nikon Aculon A211 10x50
from $83.49 
Outdated Product
Compare prices 7
TOP sellers
Product typebinocularsbinoculars
Magnification10 x10 x
Optical characteristics
Field of view 1 km away119 m114 m
Apparent angular field59.2 °
Real angle of view6.5 °
Min. focus distance5 m7 m
Twilight factor22.422.4
Relative brightness2525
Diopter adjustment
Design
Lens diameter50 mm50 mm
Exit pupil diameter5 mm5 mm
Eye relief11.8 mm
Focuscentralcentral
Anti reflective coatingmultilayermultilayer
PrismPorroPorro
Prism materialBK-7BaK-4
Interpupillary adjustment
Interpupillary distance56 – 72 mm
General
Shockproof
Case
Tripod adapter
Bodyrubberized plasticrubberized plastic
Size192x60x165 mm179x197 mm
Weight705 g900 g
Color
Added to E-Catalogjuly 2014june 2014

Field of view 1 km away

The diameter of the area visible through binoculars / monoculars from a distance of 1 km — in other words, the largest distance between two points at which they can be seen simultaneously from this distance. It is also called "linear field of view". Along with the angular field of view (see below), this parameter characterizes the space covered by the optics; at the same time, it describes the capabilities of a particular model more clearly than data on viewing angles. Models with magnification adjustment (see above) usually indicate the maximum field of view — at the lowest magnification and the widest angle of view. This information is often supplemented by data on the minimum value.

Apparent angular field

The angle of view provided by binoculars/monoculars and available to the eye of the observer. This parameter can be described as the angle between the lines connecting the two extreme points of the image visible in the eyepiece with the eye of the observer; in other words, this is the sector actually observed through binoculars (as opposed to the actual angular field of view described below). The greater the value of this parameter, the greater part of the observed space can be seen without turning the instrument. On the other hand, a wide field of view reduces the magnification factor (see above) — or significantly increases the cost of the device compared to more focused ones.

Real angle of view

The section of the panorama that can be viewed through the eyepieces of binoculars. The higher the actual angular field of view, the wider the visibility of the optics. Note that the angular field of view has an inverse relationship with magnification. That is, the higher the magnification, the narrower the visibility (the smaller the real angular field of view). The actual angular field of view is calculated as follows: you need to divide the angular field of view (in degrees °) by the magnification factor. In comparison, the human eye has an angular field of view of 60 arcseconds (“). In terms of degrees, you get 150 °. Good binoculars provide a real field of view somewhere within 10 arcseconds. But it does not always make sense to chase after large indicators of the real angular field of view. The fact is that when viewing a large section of the panorama, the edges of the image receive noticeable distortion.

Min. focus distance

The smallest distance to the observed object, at which it will be clearly visible through binoculars / monoculars. All such optical instruments were initially created for observing remote objects, therefore, not all of them are able to work at short distances. When choosing a model for this parameter, one should proceed from the expected observation conditions: ideally, the minimum focus distance should not be greater than the smallest possible distance to the observed object.

Eye relief

The offset is the distance between the eyepiece lens and the exit pupil of an optical instrument (see "Exit Pupil Diameter"). Optimum image quality is achieved when the exit pupil is projected directly into the observer's eye; so from a practical point of view, offset is the distance from the eye to the eyepiece lens that provides the best visibility and does not darken the edges (vignetting). A large offset is especially important if the binoculars / monoculars are planned to be used simultaneously with glasses — because in such cases it is not possible to bring the eyepiece close to the eye.

Prism material

Material used for prisms found in binoculars and monoculars.

- BK-7. A type of borosilicate optical glass (6LR61), a relatively inexpensive and at the same time quite functional material that provides, although not outstanding, quite acceptable image quality. Used in entry-level and mid-level models.

—BaK-4. Barium optical glass, noticeably superior to BK7 in brightness and image clarity, is however also more expensive. Accordingly, it is found mainly in the premium segment.

Interpupillary distance

Interpupillary distance adjustment range provided in binoculars with the corresponding function.

Recall that, ideally, the interpupillary distance of the device should correspond to the distance between the centers of the pupils of the user himself. With this calculation, it is worth choosing binoculars according to this parameter; and if the device will be used by several people, it is worth making sure that they all “fit” into the adjustment range of the selected model. However, not every person knows exactly their interpupillary distance, especially since it changes with age; and the circle of users can be indefinite — for example, if we are talking about "rolling" binoculars in the hunting industry. In such cases, it is worth proceeding from the following.

In adults of more or less standard physique, the interpupillary distance is in the range from 60 to 66 mm. Modern binoculars cover this range with a margin — even the most modest models support values from 60 to 70 mm, and in most cases the lower limit of the range lies in the region of 54 – 57 mm, and the upper one — 72 – 75 mm. This is quite enough for most adults, including those with a non-standard physique — miniature, or vice versa, large. So a wider range may come in handy only in special cases. For example, if a child will use binoculars, it is desirable that the lower adjustment limit be lower than the standard 50 – 55 mm (in some models, this limit is at the level of 38 mm, or even 34 mm).

Shockproof

The presence in the design of binoculars/monoculars of a reinforced body that protects sensitive optics from bumps and falls. The degree of such protection may vary between models, but even the simplest of them can usually withstand an accidental fall from your hands onto a hard surface without stones or other dangerous objects.

Tripod adapter

The presence in the design of the binoculars / monocular socket for attaching an adapter for a tripod(the adapter itself is not included in the kit, unless otherwise indicated). This feature is especially important for high magnification models (see above): they are usually heavy, making it difficult to hold stable in your hands, and at high magnification, even slight shaking can make observation impossible. In addition, mounting on a tripod is convenient for constant observation of a certain place, and such observation does not always require high magnification. Therefore, even fairly small devices can have the possibility of attaching an adapter. The adapters themselves can be designed for different sizes of tripod mounts — this must be taken into account when choosing such a model.
BRESSER Hunter 10x50 often compared
Nikon Aculon A211 10x50 often compared