USA
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison Sennheiser CX 3.00 vs Sennheiser CX 200 Street II

Add to comparison
Sennheiser CX 3.00
Sennheiser CX 200 Street II
Sennheiser CX 3.00Sennheiser CX 200 Street II
from $24.78 
Outdated Product
Compare prices 2
TOP sellers
Connection and design
Design
in-ear
in-ear
Connection typewiredwired
Connection
mini-Jack (3.5 mm)
mini-Jack (3.5 mm)
PlugL-shapedL-shaped
Cable supplydual-sideddual-sided
Cable length1.2 m1.2 m
Cable typeflatround
Specs
Soundstereostereo
Impedance18 Ohm16 Ohm
Frequency range17 – 21000 Hz20 – 20000 Hz
Sensitivity118 dB110 dB
Emitter typedynamicdynamic
General
Materialmetal
Weight12 g5 g
In box
silicone tips
silicone tips
Color
Added to E-Catalognovember 2014may 2009

Cable type

The type of cable provided in the design or package of the headphones. Note that this parameter is relevant both for wired or combined models (see "Type of connection"), and for some wireless models - in particular, earbuds and in-ear headphones without attachment, where the wire connects one earphone to another.

- Round. Classic round wire - straight, without braid and other additional devices. It is inexpensive and in most cases quite practical, which is why it is found in most modern headphones. The disadvantage is that with a small thickness, the round wire tends to tangle; therefore, this option is considered not very convenient for compact headphones, such as in-ear or in-ear headphones (see "Design"), which often have to be carried in a pocket or bag.

- Flat. The main advantage of a flat cable is that it is not as tangled as a round one, and in which case it is much easier to unravel. This is especially important for earbuds and in-ear headphones, which are often rolled up for storage or portability. However, larger overhead models can also be equipped with a flat wire.

- Drawstring around the neck. A wire adapted in one way or another to be worn around the neck - for example, having the form of a loop from which two separate headphones depart. The main advantage of this design is the convenience for constant wear: if necessary, you...can remove the headphones and leave them hanging on a cord, and then quickly put them back on. It is worth noting here that this option is found mainly among liners and in-ear models, for which the mentioned advantage is especially relevant.

- Round, braided. Round wire, supplemented with an outer braid - usually fabric. See above for more details on round wire. And the presence of a braid gives such a cable a number of advantages over the classic, in "bare" insulation. So, the wire turns out to be more durable, reliable and resistant to kinks and pressures, less confused, has a solid appearance, and in some models the braid also provides shielding from external interference. The reverse side of these advantages is the increased price.

- Spiral. Round cable, coiled in the form of a spring. The main advantages of spiral wire are that it practically does not tangle and can be noticeably stretched relative to its original length. The latter is very convenient if in the course of using the "ears" you have to change the distance to the signal source. The disadvantages of a spiral cable are bulkiness and relatively high cost. Therefore, it is often used in headphones of medium and top levels (including professional models).

- Round, braided. Cable in the form of two wires twisted into a spiral. Do not confuse this option with a spiral wire - in this case we are not talking about a spring. Such a cable is notable primarily for its unusual appearance; for greater originality, the wiring can be made multi-colored. It is also slightly more tangle-resistant than the classic round, although much depends on the thickness here. At the same time, individual wires can be noticeably thinner than a solid round wire, which somewhat reduces reliability.

- Zipper. Reversible wire (see "Cable entry"), in which the individual wires are hidden inside the halves of the zipper. The fastener does not cover the entire length of the cable, but usually takes up half, or even more. The headphones themselves with a similar wire most often belong to miniature varieties - in-ear or in-ear. Such models are very convenient in “packing” and “unpacking” for storage and carrying: by zipping up, you can connect two wires into one, and when you need the headphones again, you can unzip them by separating them. At the same time, the fastened zipper is very resistant to tangling. Yes, and this accessory looks quite unusual.

- In the form of a lace. A wire that looks like a lace - like tech used in shoes or clothing. Do not confuse such a cable with a cord around your neck (see above) - in this case, we mean not the way the wire is worn, but a specific type of braid. Such a wire is comparable in width to a flat wire, due to which it resists tangling well. However, the main advantage of this option is still the original appearance: “laces” are often made in bright colors, can be painted in several colors, complemented by a pattern, etc.

Impedance

Impedance refers to the headphone's nominal resistance to AC current, such as an audio signal.

Other things being equal, a higher impedance reduces distortion, but requires a more powerful amplifier — otherwise the headphones simply will not be able to produce sufficient volume. Thus, the choice of resistance depends primarily on which signal source you plan to connect the "ears". So, for a portable gadget (smartphone, pocket player), an indicator of 16 ohms or less is considered optimal, 17 – 32 ohms is not bad. Higher values — 33 – 64 ohms and 65 – 96 ohms — will require quite powerful amplifiers, like those used in computers and televisions. And models with a resistance of 96 – 250 ohms and above are designed mainly for Hi-End audio equipment and professional use; for such cases, detailed recommendations for selection can be found in special sources.

Frequency range

The range of audio frequencies that headphones can reproduce.

The wider this range — the more fully the headphones reproduce the spectrum of sound frequencies, the lower the likelihood that too low or too high frequencies will be inaccessible. However, some nuances should be taken into account here. First of all, we recall that the range of perception of the human ear is on average from 16 Hz to 22 kHz, and for the full picture it is enough that the headphones cover this range. However, modern models can noticeably go beyond these limits: in many devices, the lower threshold does not exceed 15 Hz, or even 10 Hz, and the upper limit can reach 25 kHz, 30 kHz, and even more. Such extensive ranges in themselves do not provide practical advantages, but they usually indicate a high class of headphones, and sometimes they are only given for promotional purposes.

The second important point is that an extensive frequency range in itself is not a guarantee of good sound: the sound quality also depends on a number of parameters, primarily the frequency response of the headphones.

Sensitivity

Rated headphone sensitivity. Technically, this is the volume at which they sound when a certain standard signal from the amplifier is connected to them. Thus, sensitivity is one of the parameters that determine the overall volume of the headphones: the higher it is, the louder the sound will be with the same input signal level and other things being equal. However, we must not forget that the volume level also depends on the resistance (impedance, see above); moreover, it is worth choosing “ears” for a specific device first by impedance, and only then by sensitivity. In this case, one parameter can be compensated for by another: for example, a model with high resistance and high sensitivity can work even on a relatively weak amplifier.

As for specific figures, headphones with indicators of 100 dB or less are designed mainly for use in a quiet environment (in some similar models, the sensitivity does not exceed 90 dB). For use on the street, in transport and other similar conditions, it is desirable to have more sensitive headphones — about 101 – 105 dB, or even 110 dB. And in some models, this figure can reach 116 – 120 dB. and even more.

It is also worth noting that this parameter is relevant only for a wired connection according to the analogue standard — for example, via a 3.5 mm mini-...jack. When using digital interfaces like USB and wireless channels like Bluetooth, the sound is processed in the built-in headphone converter, and if you plan to mainly use this kind of application, you can not pay much attention to sensitivity.

Material

The main material used for the headphone housing.

Most modern headphones are made of plastic: it is inexpensive and at the same time practical, easy to process and well suited even for complex shapes. For such models, the case material is not indicated at all. However, there are more specific options, they can be as follows:

— Metal. The main advantages of metal cases are high reliability and a solid appearance — which also lasts quite a long time due to the resistance of this material to scratches. In addition, metal may also be the best option in terms of acoustics. At the same time, it costs much more than plastic, and therefore it is found mainly among fairly advanced models, including Hi-Fi class.

Tree. Due to the characteristic colour and texture, the wood gives the headphones a pleasant and stylish appearance. In addition, it is also pleasant to the touch, and for many users, the wooden surface is associated with a “warm” and “soft” sound, which can significantly affect the subjective perception of the sound of headphones. At the same time, in reality, such a case has little effect on the sound quality, and the actual acoustic characteristics of such models may be different. Moreover, wood is rarely used in its pure form, it is usually combined with other materials — in this case, we are talking about plastic, the combination of wood and metal is placed in a separa...te paragraph (see below).

— Wood / metal. Usually, in this case, metal cases with wooden inserts are meant. See above for details on the features of these materials. Here we note that this option is considered more advanced than the “ordinary” tree (wood with plastic), however, it costs accordingly.

— Ceramics. Headphones typically use high-quality ceramics that are durable, reliable, and with advanced acoustic characteristics. At the same time, this material is very expensive. Therefore, it is found in single models, mainly in-ear "ears" of the top class — ceramics are not suitable for large cases, because such devices would be too fragile.

Weight

The total weight of the headphones; for true wireless models (see "Cable Type"), the weight of each individual earbud is listed.

This parameter is directly related to the design (see above) and some features of the functionality. Thus, the mentioned true wireless devices are very light, their weight does not exceed 25 g. More traditional in-ears and in-ears can be noticeably heavier, up to 50g for in-ears and up to 100g for most in-ears. Overhead models, for the most part, are quite massive: among them there are many models weighing 200 – 250 g, 250 – 300 g and even more than 300 g. It should be noted that a significant weight for false ears is often not a disadvantage, but an advantage: it allows them to stay on the head more securely, creates an impression of solidity and reliability, and most often does not create significant inconvenience.
Sennheiser CX 3.00 often compared
Sennheiser CX 200 Street II often compared