USA
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison Xiaomi Mi Quantie Hybrid Pro vs Sennheiser CX 300 II

Add to comparison
Xiaomi Mi Quantie Hybrid Pro
Sennheiser CX 300 II
Xiaomi Mi Quantie Hybrid ProSennheiser CX 300 II
from $16.96 up to $27.44
Outdated Product
Compare prices 4
TOP sellers
Main
Hybrid emitters. Remote control. Microphone.
Connection and design
Design
in-ear
in-ear
Connection typewiredwired
Connection
mini-Jack (3.5 mm)
mini-Jack (3.5 mm) /gilded/
PlugstraightL-shaped
Cable supplydual-sideddual-sided
Cable length1.25 m1.2 m
Cable typeround, braidedround
Specs
Impedance32 Ohm16 Ohm
Frequency range20 – 20000 Hz19 – 21000 Hz
Sensitivity101 dB113 dB
Emitter typehybriddynamic
Number of emitters2
Harmonic distortion coefficient< 0.5 %
Microphone specs
Microphoneon cable
Features
Volume control
General
Materialmetal
Weight14 g13 g
In box
silicone tips
 
silicone tips
case
Color
Added to E-Catalogdecember 2015september 2011

Plug

The design of the plug provided in the headphones. This parameter is relevant primarily for models with a mini-Jack interface (see "Connection") — the rest of the plugs are made straight in most cases, exceptions are extremely rare.

Direct. The traditional, most simple and unpretentious option is plugs that do not have any bends. Usually, they are compatible without restrictions with stationary audio equipment, PCs, laptops, etc. But for smartphones and other portable gadgets, this option is not always optimal — it all depends on how the gadget is located in your pocket or case. In some cases — for example, when carrying a smartphone in a regular pants pocket — such a wire can be strongly bent around the plug, which quickly becomes unusable; in such cases it is worth paying attention to L-shaped or curved plugs (see below).

L-shaped. Plugs angled at 90° in the shape of the letter L. Designed primarily for use with smartphones and other handheld devices: such devices, when worn, can be positioned in such a way that a bent plug is more convenient than a straight one. However, the L-shaped design may also be the best choice for stationary equipment, where the headphone wire approaches the connector at a right angle — for example, this situation is often found in computers and laptops.

At an angle of 45°. A variation of the L-shaped plug...described above, bent not at a straight line, but at a smaller angle (not necessarily exactly 45 °). It is also designed primarily for pocket equipment, and with such an application, such plugs are considered even more convenient and reliable than traditional L-shaped ones. But for stationary devices, it hardly makes sense to specifically look for a model with a similar connector (although such an application is technically quite possible).

Cable length

The length of the cable supplied with the headphones with the appropriate connectivity.

The optimal cable length depends on the planned format of the "ears". So, for pocket gadgets, 1 metre or less is often enough, for a computer it is already desirable to have a wire for 1 – 2 m, and preferably 2 – 3 m. And models with a longer cable length — 3 – 5 m or even more — are mainly designed for specific tasks, such as connecting to a TV or using in recording studios.

Recall that in some models the cable is removable (see below) and can be replaced if necessary with a longer or shorter one. Also note that there are extension cables that allow you to increase the length of the main wire; such a cable may even be included in the delivery, this point (and the length of the additional cable) is usually specified in the notes.

Cable type

The type of cable provided in the design or delivery of the headphones. Note that this parameter is relevant both for wired or combined models (see “Connection type”), and for some wireless models - in particular, earbuds and in-ear headphones without a mount, where a wire connects one earphone to another.

- Round. The classic round wire is straight, without braiding or other additional accessories. It is inexpensive and in most cases quite practical, which is why it is found in most modern headphones. The disadvantage is that if the thickness is small, the round wire is prone to tangling; therefore, this option is considered not very convenient for compact headphones, such as in-ear or in-ear (see “Design”), which often have to be carried in a pocket or bag.

- Flat. The main advantage of a flat cable is that it does not get tangled as much as a round cable, and if something happens it is much easier to untangle. This is especially important for earbuds and in-ear headphones, which are often rolled up for storage or transport. However, larger overhead models can also be equipped with a flat wire.

— Round, braided. A round wire with an outer braid, usually fabric. See above for details on round wire. And the presence of a braid gives such a cable a number of advantages over the classic one with “bare” insula...tion. Thus, the wire turns out to be more durable, reliable and resistant to kinks and pressure, tangles less, has a solid appearance, and in some models the braiding also provides shielding from external interference. The downside of these advantages is the increased price.

Spiral. A round cable, coiled into a spring. The main advantages of a spiral wire are that it practically does not tangle and can significantly stretch relative to its original length. The latter is very convenient if, as you use your ears, you have to change the distance to the signal source. The disadvantages of spiral cable are bulkiness and relatively high cost. Therefore, it is often used in mid-range and top-end headphones (including professional models).

- Round, braided. A cable in the form of two wires twisted into a spiral. This option should not be confused with a spiral wire - in this case we are not talking about a spring. This cable is notable primarily for its unusual appearance; For greater originality, the wiring can be made in different colors. It is also somewhat more tangle-resistant than the classic round one, although a lot depends on the thickness. At the same time, individual wires can be noticeably thinner than a solid round wire, which somewhat reduces reliability.

Impedance

Impedance refers to the headphone's nominal resistance to AC current, such as an audio signal.

Other things being equal, a higher impedance reduces distortion, but requires a more powerful amplifier — otherwise the headphones simply will not be able to produce sufficient volume. Thus, the choice of resistance depends primarily on which signal source you plan to connect the "ears". So, for a portable gadget (smartphone, pocket player), an indicator of 16 ohms or less is considered optimal, 17 – 32 ohms is not bad. Higher values — 33 – 64 ohms and 65 – 96 ohms — will require quite powerful amplifiers, like those used in computers and televisions. And models with a resistance of 96 – 250 ohms and above are designed mainly for Hi-End audio equipment and professional use; for such cases, detailed recommendations for selection can be found in special sources.

Frequency range

The range of sound frequencies that headphones can reproduce.

The wider this range, the more fully the headphones reproduce the spectrum of sound frequencies, the lower the likelihood that too low or too high frequencies will be inaccessible. However, there are some nuances to consider here. First of all, let us remind you that the perceptual range of the human ear is on average from 16 Hz to 22 kHz, and for the complete picture it is enough for headphones to cover this range. However, modern models can significantly exceed these boundaries: in many devices the lower threshold does not exceed 15 Hz, or even 10 Hz, and the upper limit can reach 25 kHz, 30 kHz and even more. Such wide ranges in themselves do not provide practical advantages, but they usually indicate a high class of headphones, and are sometimes given only for advertising purposes.

The second important point is that a wide frequency range in itself is not a guarantee of good sound: sound quality also depends on a number of parameters, primarily the amplitude-frequency response of the headphones.

Sensitivity

Rated headphone sensitivity. Technically, this is the volume at which they sound when a certain standard signal from the amplifier is connected to them. Thus, sensitivity is one of the parameters that determine the overall volume of the headphones: the higher it is, the louder the sound will be with the same input signal level and other things being equal. However, we must not forget that the volume level also depends on the resistance (impedance, see above); moreover, it is worth choosing “ears” for a specific device first by impedance, and only then by sensitivity. In this case, one parameter can be compensated for by another: for example, a model with high resistance and high sensitivity can work even on a relatively weak amplifier.

As for specific figures, headphones with indicators of 100 dB or less are designed mainly for use in a quiet environment (in some similar models, the sensitivity does not exceed 90 dB). For use on the street, in transport and other similar conditions, it is desirable to have more sensitive headphones — about 101 – 105 dB, or even 110 dB. And in some models, this figure can reach 116 – 120 dB. and even more.

It is also worth noting that this parameter is relevant only for a wired connection according to the analogue standard — for example, via a 3.5 mm mini-...jack. When using digital interfaces like USB and wireless channels like Bluetooth, the sound is processed in the built-in headphone converter, and if you plan to mainly use this kind of application, you can not pay much attention to sensitivity.

Emitter type

The type of sound emitters installed in the headphones. The type determines the principle of operation of emitters and some features of their design.

Dynamic. The simplest type of emitters operating on the principle of an electromagnet. Due to the combination of low cost with quite decent performance, it is also the most common, especially among entry-level and mid-range headphones. Such an emitter consists of a magnet, a coil placed in its field, and a membrane attached to the coil. When an alternating current (signal) enters the coil, it begins to vibrate, transmitting vibrations to the membrane and creating sound. From an acoustic point of view, the main advantages of dynamic radiators are a wide frequency range and good volume, the disadvantage is a relatively high probability of distortion, especially with a worn membrane.

Reinforcing. A peculiar modification of dynamic emitters (see the relevant paragraph), used mainly in high-end in-ear headphones. The basis of the design of such a radiator is a U-shaped metal plate. One of its ends is fixed motionless, the second, movable, is located between the poles of a permanent magnet, and a coil is wound around it (closer to the crossbar), through which the signal current passes. Vibrating under the action of this current, the movable part of the plate transmits vibrations to a rigid membrane, with which it is connected by a thin need...le. This technology allows you to achieve good volume and low distortion with a very small size of the earpiece itself. The disadvantages of reinforcing radiators, in addition to high cost, are uneven frequency response and a relatively narrow frequency range. However, in expensive headphones of this type, several emitters can be provided at once, including on a hybrid basis (see relevant paragraph).

Hybrid. Hybrid devices are usually called devices that combine dynamic and reinforcing emitters. See above for more details on these varieties; and their combination is used to combine advantages and compensate for disadvantages. Usually, in such headphones there is only one dynamic emitter, it is responsible for low frequencies, and there can be several reinforcing ones, they share the midrange and high frequencies. This allows you to achieve a more uniform frequency response than in purely armature models, but it significantly affects the price.

Planar. The design of emitters of this type includes two powerful permanent magnets, between which there is a thin film membrane. The shape of the headphones themselves can be either round (orthodynamic emitters) or rectangular (isodynamic). According to the principle of operation, such systems are similar to dynamic ones, with the adjustment for the fact that there is no coil in the design — its role is played by the membrane itself with applied conductive tracks, to which the audio signal is fed. Due to this, distortions associated with the uneven oscillations of the membrane are practically absent; in addition, the sound as a whole is clear and reliable, and the frequency response is uniform. The main disadvantages of planar magnetic headphones are high cost, increased requirements for signal quality, and rather large dimensions. In addition, they are somewhat inferior to dynamic ones in terms of volume and overall frequency range.

Electrostatic. Like planar-magnetic (see the relevant paragraph), such emitters are designed according to the "sandwich" principle. However, the membrane in them is located not between the magnets, but between the metal grids, and is made of a very thin metallized film. An audio signal is connected to such a system in a special way, and the membrane begins to oscillate due to attraction and repulsion from the grids, creating sound. Electrostatic drivers achieve very high sound quality, low distortion, and high fidelity, but they are bulky, complex, and expensive to use. And it's not just the high cost of the headphones themselves — their operation requires additional matching amplifiers with a voltage range of hundreds or even thousands of volts, and such devices cost a lot, and have the appropriate dimensions.

Number of emitters

The number of emitters installed in each individual earphone. Specified only for models with more than one emitter.

The meaning of this feature depends on the type of emitters (see above). So, in hybrid models, by definition, there are several — the frequency range is distributed between them, which has a positive effect on the frequency response. For the same purpose, several reinforcing radiators can be used. And with the traditional dynamic principle of operation, due to several emitters, the effect of surround sound can also be provided (see "Sound").

Anyway, "ears" with numerous emitters, other things being equal, will be more advanced, but also more expensive.

Harmonic distortion coefficient

The coefficient of harmonic distortion produced by this model of headphones.

This parameter determines the amount of non-linear distortion introduced by the headphones into the reproduced sound. The lower it is, the less such distortions, the cleaner and closer to the original sound is. So, an indicator of 1% or more can be considered tolerable at best, from 0.5% to 1% — good, less than 0.5% — excellent (such indicators are acceptable even for monitor headphones), and less than 0.1% — almost perfect.

Note that a low harmonic coefficient in itself does not guarantee high-quality sound — a lot depends on other features of the headphones, primarily the frequency response.
Xiaomi Mi Quantie Hybrid Pro often compared
Sennheiser CX 300 II often compared