Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Water Heaters

Comparison Zanussi GWH 10 Fonte vs Electrolux GWH 265 ERN NanoPlus

Add to comparison
Zanussi GWH 10 Fonte
Electrolux GWH 265 ERN NanoPlus
Zanussi GWH 10 FonteElectrolux GWH 265 ERN NanoPlus
from $103.40 up to $130.96
Outdated Product
from $145.00
Outdated Product
User reviews
TOP sellers
Main
Compactness. Display.
Noisy work. The need for frequent replacement of batteries.
Typetanklesstankless
Energy sourcegasgas
Installationverticalvertical
Tank shaperectangularrectangular
Technical specs
Power sourceenergy independentenergy independent
Rated heat exchanger power18.5 kW20 kW
Performance (Δt ~25 °C)10 L/min10 L/min
Performance (Δt ~50 °C)5 L/min
Water supplywith pressurewith pressure
Heating elements11
Heating element type
heat exchanger
heat exchanger
Ignition typebatteriespiezo ignition
Combustion chamber typeopen (atmospheric)open (atmospheric)
Flue diameter110 mm113 mm
Features
Functions
thermostat
display
thermostat
display
Safety systems
overheat protection
 
gas control
draft sensor
overheat protection
frost protection
gas control
 
General specs
Controlselectronicelectronic
Controls layoutfrontfront
Pipe connectionbottombottom
Dimensions (HxWxD)55x33x18.9 cm55x32.8x18 cm
Weight8.2 kg
Added to E-Catalogapril 2016september 2013

Rated heat exchanger power

Rated power of the heat exchanger installed in the gas or indirect heater (see "Water heater type"), in other words, the amount of heat that can be transferred to the heated water through the heat exchanger.

This parameter is directly related to the performance of the water heater: high performance inevitably requires appropriate power. At the same time, the power of the heat exchanger is selected in such a way as to provide the necessary operating parameters (primarily performance and temperature). So when choosing a water heater, you should focus primarily on these parameters. Data on the power of the heat exchanger may be needed for some specific calculations — for example, assessing the compatibility of the heater with a boiler or solar collector: an external heat source must have no less thermal power than the heat exchanger, otherwise, it will be impossible to achieve the claimed performance.

It is also worth considering that the actual power of the heat exchanger depends on the temperature of the coolant flowing through it. In the characteristics of the water heater, usually, the power is given for the maximum allowable operating temperature; if the coolant is cooler, then the actual power will be lower.

Performance (Δt ~50 °C)

Water heater performance when heating water by approximately 50 °C above the initial temperature.

Productivity is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the unit can handle in this mode. Therefore, the performance of water heaters must be indicated for specific options ΔT — namely 25 °C, 40 °C and/or 50 °C. And it is worth choosing according to this indicator taking into account the real needs for hot water: exactly how much and what temperature is needed for a particular situation. Methods of such calculations can be found in special sources.

Recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, Δt~50 °C can be described as a very significant degree of heating: it allows even water with a temperature of about zero to be heated to the “hot” state, and the level of 60 °C can be reached at an initial temperature of only 10 °C (this temperature, for example, it is quite possible to meet in cold tap water even in the off-season, not to mention the summer). However, in modern water heaters, operati...ng temperatures above 60 °C are often found; to achieve them, you usually have to work with ΔT greater than 50 °C — respectively, and the actual performance is less than indicated in this paragraph. Nevertheless, it is this parameter that is closest to the real capabilities of the water heater when it comes to the full conversion of cold water into hot.

Ignition type

The method of ignition of gas in gas water heaters.

— Batteries. Ignition from an electric spark created by a special electrical circuit powered by batteries. Battery ignition allows you to ignite without unnecessary wires, it can be used in models that do not require a mains connection at all. However, the user has to monitor the condition of the batteries and periodically change them, but this does not have to be done so often, and the replacement itself is not difficult.

— Mains. Ignition from an electric spark created by electricity from a socket. Batteries do not need to be changed in such systems but water heaters require a connection to the mains. Mains ignition is found mainly among gas heaters with advanced electronic control, in which power from the outlet is required for control circuits — it makes sense to power the ignition from the same outlet.

Piezo ignition. Ignition due to a piezoelectric element — a special device that generates electricity when a button is pressed (transforms the mechanical energy of pressing into electrical energy). Piezo ignition does not require battery power, and the life of the piezo element is usually comparable to the life of the heater itself.

Turbine. It is used in instant water heaters (see "Type"). With this type of ignition, electricity to crea...te a spark is generated by a microturbine driven by the movement of water through the heater. At the same time, in many cases, no additional actions are required from the user — ignition occurs automatically when the tap is opened and water begins to move through the device.

Note that most gas boilers also allow traditional ignition, from a match or other open flame. This option is provided as a spare, in case of failure of the main ignition system.

Flue diameter

Flue diameter for which the gas water heater is designed (see "Energy source").

This parameter is useful primarily for the selection and installation of a flue for a specific device. At the same time, it is worth remembering that the design of the duct differs depending on the type of combustion chamber (see above). So, for an open chamber, an ordinary pipe is used; in such cases, one diameter is indicated in the characteristics. But closed (turbocharged) combustion chambers are usually made under the so-called coaxial flue — a channel of the "pipe in pipe" type, where combustion products are brought out through the inner pipe, and the air necessary for fuel combustion is taken from the outside through the outer pipe. For such chimneys, two diameters are indicated for each of the pipes.

Safety systems

The safety of water heaters can be carried out by such functions as overheat protection frost protection, dry heating protection, surge protection, electrical protection (RCD), anti-legionella, gas control and draft sensor. More about them:

— Overheat protection. Water heater safety system that automatically turns off the power supply or gas supply (depending on the type) when the heating element reaches a critical temperature. It avoids overheating and the troubles associated with it, ranging from heater failure to fire.

— Frost protection. Function to prevent freezing of water in the circuits, tank and/or heat exchanger of the water heater. It will be useful when the device is installed in a room with a low temperature and works with long breaks. Frozen water expands, which can damage the device; to avoid this, the frost protection monitors the temperature of the water in the device and turns on the heating when this temperature drops to a critical level.

— Dry heating protection. A safety system that prevents the heater from being switched on without the presence of water in it. Since the heating element does not transfer heat to the water when turned on, it heats up very q...uickly and, in a short time, reaches a high temperature that can lead to damage to the heater and even to a fire. The presence of protection against switching on without water allows you to avoid such unpleasant consequences.

— Voltage surge protection. System for protecting the heater from power surges. Electronically controlled models are usually equipped with such protection (see Control) since it is the control electronics that are most sensitive to problems with the power supply. Note that the capabilities of such systems are noticeably more modest than those of specialized stabilizers or protective systems: the “hardware” of a water heater can smooth out relatively weak power surges, but in case of serious failures, it will most likely simply turn off the device to avoid damage. However, this feature will be useful; except that in very unstable electrical grids, prone to frequent fluctuations, such a heater may require an external stabilizer.

— Electrical protection (RCD). Built directly into the heater, the RCD is a residual current device. Such a device is primarily intended to protect people from electric shock — for example, if the insulation is damaged and electricity leaks into the case or water. When a person comes into contact with this electricity, a so-called leakage current occurs. The RCD reacts to it and almost instantly turns off the power to the boiler, preventing electric shock.
Note that such safety devices are standardly installed directly in switchboards. However, the presence of an RCD in the water heater provides additional security. Naturally, such equipment is found mainly in electric models.

— Safety valve. A safety system that prevents a critical increase in water pressure in the heater. Usually, this protection is based on a safety valve that opens when a certain pressure level is reached and drains excess water, avoiding damage to the heater.

— Gas control. Gas heater safety system that automatically shuts off the gas supply in the event of a burner flame failure. It avoids filling the room with gas and possible unpleasant, and even tragic consequences. Resuming the gas supply after the protection is triggered must be done manually.

— Draft sensor. A sensor that monitors the presence of draft in the flue of a gas water heater. This function is especially important for models with open combustion chambers: in the absence of a draft, combustion products will fill the room where the heater is located. And this, in turn, can lead to a deterioration in people's well-being, health problems and even deaths. To avoid such consequences, this sensor, when detecting problems with the draft, turns off the gas supply and issues a warning about the problem. However, such equipment can also be found in models with closed combustion chambers. In them, the draft sensor performs mainly a diagnostic function, allowing you to determine what interferes with the normal operation of the burner.

— Anti-legionella. A function that prevents the growth of pathogenic bacteria in the tank and water heater circuits. Some types of such bacteria can live and multiply in fairly hot water — up to 60 °C. To avoid this, the anti-legionella system monitors the temperature of the water in the tank and periodically raises it to a level of about 65 °C. The specific methods of operation of such systems can be different: for example, some work strictly according to a set schedule (for example, once every two weeks), others turn on additional heating only if for some period (for example, a month) the water has not been heated to sufficiently high temperatures.

Weight

The weight of the device, excluding the water collected (passing) into it.
Zanussi Fonte often compared
Electrolux GWH ERN NanoPlus often compared