USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Acer P1500 vs BenQ W1080ST

Add to comparison
Acer P1500
BenQ W1080ST
Acer P1500BenQ W1080ST
from $688.80 up to $977.36
Outdated Product
from $1,249.00 
Expecting restock
TOP sellers
Main functionuniversaluniversal
Lamp and image
Lamp typeP-VIP
Service life4000 h
3500 h /6000 in economy mode/
Service life (energy-saving)7000 h
Lamp power210 W240 W
Brightness2000 lm
Brightness ANSI Lumens3000 lm
Dynamic contrast10 000:110 000:1
Colour rendering1 billion colors1 billion colors
Horizontal frequency31 - 99 kHz15 - 102 kHz
Frame rate23 - 120 Hz23 - 120 Hz
Sensor
TechnologyDLPDLP
Sensor size0.65"
Real resolution1920x1080 px1920x1080 px
Max. video resolution1920x1200 px
Image format support16:9, 4:316:9, 4:3
Colour enhancement
 /ColorBoost/
Projecting
Rear projection
Throw distance, min1.5 m0.45 m
Throw distance, max6 m7.73 m
Image size1.15 - 7.62 m0.76 - 7.62 m
Throw ratio1.15:1 – 1.5:1
Optical zoom1.3 x1.2 x
Digital zoom2 x
Zoom and focusmanual
manual /f=2.6-2.78, f=10.2-12.24 мм/
Keystone correction (vert), ±40 °
Features
Features
3D support
3D support
Hardware
Video connectors
VGA /1 input and 1 output/
S-Video
composite
 
VGA
S-Video
composite
component
HDMI inputs1no
HDMI versionv 1.4
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
 
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
RCA (audio)
Service connectors
COM port (RS-232)
USB (slave)
COM port (RS-232)
USB (slave)
General
Noise level (nominal)32 dB
33 dB /30 in economy mode/
Noise level (energy-saving / quiet)26 dB
Power sourcemainsmains
Power consumption270 W353 W
Size (HxWxD)78x264x220 mm104x312x244 mm
Weight2.2 kg2.85 kg
Color
Added to E-Catalogseptember 2013march 2013

Lamp type

— HD (High-intensity discharge). General name for gas discharge lamps, i.e. lamps in which the light flow is created by an electrical discharge between the electrodes inside the bulb. In the case of projectors, such lamps can be mercury, metal-halide, and xenon (see above for more details).

LED. LEDs are used as a light source. They provide high brightness with low power consumption.

Laser-LED. Light source based on laser LEDs. It has even greater brightness than classic LED, with relatively low power consumption.

— UHP (Ultra-high performance) — a high-pressure mercury lamp, developed by Philips. Compared to other lamps, it consumes less power, while not inferior in brightness. Projectors on such lamps are smaller and lighter than conventional ones due to a smaller power supply, the cooler operates with a lower noise level. The creators claimed a service life of up to 10,000 hours. One of the most popular types of lamps for projectors today

– UHE (Ultra-High Energy). Variety of UHP lamps (see above).

— UHB (Ultra-high brightness). Another kind of UHP lamps (see above).

— NSH (New Super High Pressure). Also applies to high pressure mercury lamps manufactured by Ushio. Somewhat less popular than UHP and its peers, but also widespread. Estimated operating time is about...2000 hours.

— SHP. High pressure mercury lamps manufactured by Phoenix.

— P-VIP (Video Projector) — a high-pressure mercury lamp from OSRAM. High brightness lamps, service life — 4000 — 6000 hours.

—UHM (Ultra High Performance Lamp of Matsushita) is a high pressure mercury lamp manufactured by Panasonic. Сan be easily changed, operating time, depending on type — 2000 — 5000 hours.

— Xenon. The design and principle of operation of such lamps are similar to high-pressure mercury lamps — light is created due to a discharge in a gaseous medium. However, instead of mercury vapor, in this case, an inert xenon gas under high pressure is used. This allows to create high power lamps (from 2 kW) with the appropriate light flow. Xenon lamps are used primarily in professional models.

— HPM. High-pressure mercury lamp technology developed by Sony and used primarily in its projectors (although other brands are also available). Combines compact size and relatively low cost with high brightness.

— DC. Abbreviation for "direct current". In the case of projector lamps, this designation usually refers to mercury lamps powered by direct current. The operating voltage of such lamps in different models of projectors may be different. Their design usually uses various tricks to improve performance compared to conventional lamps of this type — in particular, increase service life and reduce power consumption without sacrificing brightness.

— AC. This abbreviation stands for "alternating current". Such lamps are similar in almost everything to the DC ones described above, differing from them only in the type of power supply.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Service life (energy-saving)

When working in economy mode, the brightness of the backlight is noticeably reduced, on average by 30-50%. With a decrease in brightness, heat dissipation also decreases, which saves the working life of the illuminator, thereby increasing the lamp life. Thus, the ECO mode allows you to extend the lamp life by an average of 30%. If the typical projector lamp life is 4000 hours, regular use of the ECO mode will extend the backlight life to approximately 5500 hours.

Lamp power

The power consumption of the backlight lamp installed in the projector.

Theoretically, the more powerful the lamp, the brighter it is. However, this is only true when comparing lamps of the same type (see above); and even in this case, the brightness may also depend on the nuances of the design. Therefore, when evaluating the capabilities of a lamp, it is worth focus not so much on power, but on the directly claimed brightness in lumens (see below).

But what this parameter directly affects is the total power consumption of the projector: the lamp is the most “greedy” component of the device, compared to it, the power consumption of the rest of the electronics is very small. Also note that many powerful lamps have high heat dissipation and require cooling systems, which affects the size and weight of the projector.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Horizontal frequency

Horizontal frequency supported by the projector.

This parameter is relevant when working with analogue video signal. In such a video, the image is formed line by line: each pixel in the line is highlighted in turn, then the next line is highlighted, and so on. The horizontal frequency describes how many times per second the backlight beam runs from edge to edge of the screen. For normal playback, the projector must support the same refresh rate as the input signal was recorded. However, most models support a fairly wide range of frequencies, and there are no problems with support. Also note that if you are not a professional, then when choosing a projector, it is quite possible to focus on the frame rate (see below) — this parameter is simpler and more intuitive, and support for a certain frame rate automatically means support for the corresponding line rate.

Sensor size

The size of the sensor affects the depth and final quality of the image. The larger the sensor, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Max. video resolution

The maximum resolution is closely related to both the overall picture quality and the screen size. The higher the resolution of the projector, the clearer the image details become, especially when viewing the picture on a large screen.

For the vast majority of tasks, a resolution ranging from HD (1280x720) to Full HD (1920x1080) is usually enough. If the projector will be used to play modern games, you should choose a model with a resolution from Quad HD (2560x1440) to 4K (3840×2160) and even 8K (7680x4320).

Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between Quad HD and 4K formats. A high-resolution picture will be able to express itself on a really big screen.
Acer P1500 often compared
BenQ W1080ST often compared