USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Optoma UHD550X vs Acer H7850

Add to comparison
Optoma UHD550X
Acer H7850
Optoma UHD550XAcer H7850
Outdated ProductOutdated Product
TOP sellers
Main
Support for HDR technology
Main functionhomehome
Lamp and image
Lamp typeUHP
Lamp modelMC.JPC11.002
Service life4000 h4000 h
Service life (energy-saving)10000 h10000 h
Lamp power240 W240 W
Brightness2800 lm3000 lm
Dynamic contrast500 000:11 000 000:1
Colour rendering1 billion colors1 billion colors
Horizontal frequency31 – 135 kHz15 – 135 kHz
Frame rate24 – 120 Hz24 – 120 Hz
Sensor
TechnologyDLPDLP
Real resolution3840x2160 px3840x2160 px
Image format support16:9, 4:316:9, 16:10, 4:3
HDR support
Projecting
Rear projection
Throw distance, min1.3 m1.3 m
Throw distance, max9.3 m9.3 m
Image size0.67 – 7.68 m0.66 – 7.67 m
Throw ratio1.39:1 – 2.22:11.39:1 – 2.22:1
Optical zoom1.6 x1.6 x
Digital zoom2 x
Zoom and focusmanualmanual
Lens shift
Keystone correction (vert), ±15 °15 °
Features
Features
DLNA support
MHL support
PJ-Link protocol
3D support
DLNA support
MHL support
 
 
Wi-FiWi-Fi ready (optional)
Hardware
USB 2.011
Number of speakers22
Sound power8 W10 W
Video connectors
VGA
VGA /1 input, 1 output/
HDMI inputs22
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
optical
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
 
Service connectors
COM port (RS-232)
 
LAN (RJ-45)
COM port (RS-232)
USB (slave)
LAN (RJ-45)
General
Noise level (nominal)25 dB29 dB
Noise level (energy-saving / quiet)26 dB
Power sourcemainsmains
Power consumption
305 W /249 W in economy mode/
315 W /260 W in economy mode/
Size (HxWxD)141x498x331 mm127x398x298 mm
Weight7.8 kg5.3 kg
Color
Added to E-Catalognovember 2017august 2017

Lamp type

— HD (High-intensity discharge). General name for gas discharge lamps, i.e. lamps in which the light flow is created by an electrical discharge between the electrodes inside the bulb. In the case of projectors, such lamps can be mercury, metal-halide, and xenon (see above for more details).

LED. LEDs are used as a light source. They provide high brightness with low power consumption.

Laser-LED. Light source based on laser LEDs. It has even greater brightness than classic LED, with relatively low power consumption.

— UHP (Ultra-high performance) — a high-pressure mercury lamp, developed by Philips. Compared to other lamps, it consumes less power, while not inferior in brightness. Projectors on such lamps are smaller and lighter than conventional ones due to a smaller power supply, the cooler operates with a lower noise level. The creators claimed a service life of up to 10,000 hours. One of the most popular types of lamps for projectors today

– UHE (Ultra-High Energy). Variety of UHP lamps (see above).

— UHB (Ultra-high brightness). Another kind of UHP lamps (see above).

— NSH (New Super High Pressure). Also applies to high pressure mercury lamps manufactured by Ushio. Somewhat less popular than UHP and its peers, but also widespread. Estimated operating time is about...2000 hours.

— SHP. High pressure mercury lamps manufactured by Phoenix.

— P-VIP (Video Projector) — a high-pressure mercury lamp from OSRAM. High brightness lamps, service life — 4000 — 6000 hours.

—UHM (Ultra High Performance Lamp of Matsushita) is a high pressure mercury lamp manufactured by Panasonic. Сan be easily changed, operating time, depending on type — 2000 — 5000 hours.

— Xenon. The design and principle of operation of such lamps are similar to high-pressure mercury lamps — light is created due to a discharge in a gaseous medium. However, instead of mercury vapor, in this case, an inert xenon gas under high pressure is used. This allows to create high power lamps (from 2 kW) with the appropriate light flow. Xenon lamps are used primarily in professional models.

— HPM. High-pressure mercury lamp technology developed by Sony and used primarily in its projectors (although other brands are also available). Combines compact size and relatively low cost with high brightness.

— DC. Abbreviation for "direct current". In the case of projector lamps, this designation usually refers to mercury lamps powered by direct current. The operating voltage of such lamps in different models of projectors may be different. Their design usually uses various tricks to improve performance compared to conventional lamps of this type — in particular, increase service life and reduce power consumption without sacrificing brightness.

— AC. This abbreviation stands for "alternating current". Such lamps are similar in almost everything to the DC ones described above, differing from them only in the type of power supply.

Lamp model

The lamp model that the projector is designed for. Most projectors come with lamps included, so this information is not needed for normal use. But when looking for a spare lamp or replacement, information about model can be very useful: finding a spare part by the exact name is much easier than by general data like the brand of the projector.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Horizontal frequency

Horizontal frequency supported by the projector.

This parameter is relevant when working with analogue video signal. In such a video, the image is formed line by line: each pixel in the line is highlighted in turn, then the next line is highlighted, and so on. The horizontal frequency describes how many times per second the backlight beam runs from edge to edge of the screen. For normal playback, the projector must support the same refresh rate as the input signal was recorded. However, most models support a fairly wide range of frequencies, and there are no problems with support. Also note that if you are not a professional, then when choosing a projector, it is quite possible to focus on the frame rate (see below) — this parameter is simpler and more intuitive, and support for a certain frame rate automatically means support for the corresponding line rate.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

Image size

Diagonal size of the image projected by the projector. Usually, it is indicated as a range — from the smallest, at the minimum throw distance, to the largest, at the maximum. About throw distances, see above; here it is worth saying that the choice of diagonal size depends both on the distance between the screen and the audience, and on the format of the projector. For example, to watch a video, the best option is the situation when the distance from the viewer to the image corresponds to 3-4 diagonals, and a relatively large picture can be useful for working with presentations. More detailed recommendations for different situations can be found in special sources; here we only recall that the image must fit on the screen used with the projector.

Digital zoom

The magnification range of digital zoom provided by the projector.

It is impossible to increase the diagonal digitally, so in this case we are usually talking about enlarging the image within the existing diagonal. Thus, for example, you can “stretch” a photo or diagram to fill the screen, removing the frames around the edges, enlarge a separate fragment of the image for a more detailed examination, etc. And in some models, digital zoom means, in fact, a reduction, when instead of the entire sensor only part of it is used. This can be useful if the original size of the image does not fit the screen.

It is worth noting that in both cases, the operation of the “zoom” is associated with a decrease in resolution and some deterioration in the overall quality of the picture.

Lens shift

The projector has a movable lens that can move at least vertically, and in the most advanced models — also horizontally. This feature allows you to adjust the location of the "picture" relative to the screen — most often it is about setting the image exactly in the centre. Using a moving lens for this is much easier than moving the projector or screen itself. Therefore, such models with lens shift can be very useful for those who are not sure that the installation location will optimally match the screen location.
Optoma UHD550X often compared
Acer H7850 often compared