USA
Catalog   /   Photo   /   Digital Cameras

Comparison Canon EOS M100 kit 15-45 vs Sony A6000 kit 16-50

Add to comparison
Canon EOS M100  kit 15-45
Sony A6000  kit 16-50
Canon EOS M100 kit 15-45Sony A6000 kit 16-50
from $749.00 
Outdated Product
Compare prices 2
TOP sellers
Main
Fast and tenacious autofocus. High rate of fire. Electronic viewfinder. Developed ergonomics. Tilt display.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
DxOMark rating7882
Sensor
SensorCMOS (CMOS)
CMOS (CMOS) /bionz-X processor/
Sensor size
APS-C (23x15.5 mm) /22.3х14.9 mm/
APS-C (23x15.5 mm)
Total MP2624.7
Effective MP number2424.3
Maximum image size6000x4000 px6000x4000 px
Light sensitivity (ISO)100-25600
100-25600 /hardware ISO up to 51200 possible/
RAW format recording
Lens
Mount (bayonet)Canon EF-MSony E
Kit lens
Aperturef/3.5 - f/5.6f/3.5 - f/5.6
Focal length15 - 45 mm16 - 50 mm
Optical zoom33.1
Manual focus
Image stabilizationis absentis absent
Photo shooting
Number of scene programs15
HDR
White balance measuring
Exposure compensation± 3 EV, in 1/3 EV increments± 5 EV, in 1/2 or 1/3 EV increments
Auto bracketing
 /± 5 (3.5 frames at 1/3 EV, 1/2 EV, 2/3 EV, 1 EV, 2 EV steps)/
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 pix 60 fps1920x1080 pix 60 fps
File recording formatsMP4 (H.264)MPEG-4, AVCHD
Manual video focus
Maximum video length
time limit
memory limit
 
 
Connection ports
micro HDMI v 1.4
HDMI v 1.4
Focus
Autofocus modes
one shot
tracking
in face
one shot
tracking
in face
Focus points49 шт179 шт
Touch focus
Contour enhancement
Viewfinder and shutter
Viewfinderis absent
electronic /magnification 0.7x, 1440k dots/
Frame coverage100 %
Shutter speed30-1/4000 sec30 - 1/4000 sec
Continuous shooting6 fps11 fps
Shutter typemechanical
Screen
Screen size3 ''3 ''
Screen resolution1040 thousand pixels921 thousand pixels
Touch screen
Rotary display
Memory and communications
Memory cards types
SD, SDHC, SDXC /Eye-Fi, UHS-I/
SD, SDHC, SDXC /MS Pro Duo, MS Pro-HG Duo, MS Pro-HG HX Duo/
Communications
Wi-Fi 4 (802.11n)
Bluetooth
NFC
smartphone control
Wi-Fi 4 (802.11n)
 
NFC
 
Flash
Built-in flash
Application range5 m6 m
Power source
Power source
battery
battery
Battery modelLP-E12NP-FW50
Battery capacity1080 mAh
Shots per charge295 шт360 шт
General
Case/case modelLCS-EBC, LCS-EJA
Charger modelBC-QM1
Console/synchronizer modelRM-VPR1, RMT-DSLR2
Materialmagnesium alloyaluminium/plastic
Dimensions (WxHxD)108х67х35 mm120х67х45 mm
Weight302 g921 g
Color
Added to E-Catalogaugust 2017february 2014

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Effective MP number

The number of pixels (megapixels) of the matrix directly involved in the construction of the image, in fact — the number of points from which the captured image is built. Some manufacturers, in addition to this parameter, also indicate the total number of MPs, taking into account the service areas of the matrix. However, it is the effective number of MPs that is considered the main indicator — it is this that directly affects the maximum resolution of the resulting image (see “Maximum image size”).

A megapixel is 1 million pixels. Numerous megapixels ensures high resolution of the captured photos, but is not a guarantee of high-quality images — much also depends on the size of the sensor, its light sensitivity (see the relevant glossary items), as well as hardware and software image processing tools used in the camera. Note that for small matrices, high resolution can sometimes be more of an evil than a blessing — such sensors are very prone to the appearance of noise in the image.

Mount (bayonet)

The type of bayonet mount — mount for interchangeable lenses — provided in a SLR or MILC camera (see "Camera type"). Bayonets come in different sizes, and interchangeable lens specifications usually indicate which mount it is designed for. Most often, mounts of different types are not compatible with each other, but there are exceptions (sometimes directly, sometimes using adapters).

Also note that one brand can use different mounts for different classes of cameras — and vice versa, one mount can be used by several manufacturers. So, Canon releases cameras with mounts EF-M, EF-S, EF and Canon RF. Leica has Leica M, Leica SL, Leica TL. Nikon has in its arsenal Nikon 1, Nikon F, Nikon Z. Pentax — Pentax 645, Pentax K, Pentax Q. Samsung offers NX and NX-M mounts. Sony cameras have Sony A and Sony E, Fuji has Fujifilm G and Fujifilm X. And as an example of a mount used by different brands, one can cit...e Micro 4/3, which is widespread in Olympus and Panasonic cameras.

Focal length

Focal length of the camera lens.

Focal length is such a distance between the camera matrix and the optical center of the lens, focused at infinity, at which a clear and sharp image is obtained on the matrix. For models with interchangeable lenses ( mirrorless cameras and MILC, see “Camera Type”), this parameter is indicated if the camera is supplied with a lens (“kit”); Let us recall that, if desired, optics with other characteristics can be installed on such a camera.

The longer the focal length, the smaller the viewing angle of the lens, the higher the degree of approximation and the larger the objects visible in the frame. Therefore, this parameter is one of the key for any lens and largely determines its application (specific examples are given below).

Most often in modern digital cameras, lenses with a variable focal length are used: such lenses are able to zoom in and out of the image (for more details, see "Optical Zoom"). For "DSLRs" and MILC, specialized optics with a constant focal length (fixed lenses) are produced. But in digital compacts, "fixes" are used extremely rarely, usually such a lens is a sign of a high-end model with specific characteristics.

It should be borne in mind that the actual focal length of the lens is usually given in the characteristics of the camera. And the viewing angles and the general purpose of the optics are determined not only by this parameter, but also...by the size of the matrix with which the optics are used. The dependence looks like this: at the same viewing angles, a lens for a larger matrix will have a longer focal length than a lens for a small sensor. Accordingly, only cameras with the same sensor size can be directly compared with each other in terms of lens focal length. However, to facilitate comparisons in the characteristics, the so-called. EGF - focal length in 35 mm equivalent: this is the focal length that a lens for a full frame matrix having the same viewing angles would have. You can compare by EGF lenses for any matrix size. There are formulas that allow you to independently calculate the equivalent of 35 mm, they can be found in special sources.

If we talk about a specific specialization, then the EGF up to 18 mm corresponds to ultra-wide-angle fisheye lenses. Wide-angle is considered "fixed" optics with EGF up to 28 mm, as well as vario lenses with a minimum EGF up to 35 mm. Values up to 60mm correspond to "general purpose" optics, 50 - 135mm are considered optimal for shooting portraits, and higher focal lengths are found in telephoto lenses. More detailed information about the specifics of various focal lengths can be found in special sources.

Optical zoom

The magnification factor provided by the camera by using the capabilities of the lens (namely, by changing its focal length). In models with interchangeable lenses (see “Camera type”), indicated for the complete lens, if available.

Note that in this case the magnification is indicated not relative to the image visible to the naked eye, but relative to the image produced by the lens at minimum magnification. For example, if the characteristics indicate an optical zoom of 3x, this means that at the maximum magnification, objects in the frame will be three times larger than at the minimum.

The degree of optical zoom is directly related to the range of focal lengths (see above). You can determine this degree by dividing the maximum focal length of the lens by the minimum, for example 360mm / 36mm=10x magnification.

To date, optical zoom provides the best "close" image quality and is considered to be superior to digital zoom (see below). This is due to the fact that with this format of work, the entire area of \u200b\u200bthe matrix is constantly involved, which allows you to fully use its capabilities. Therefore, even among low-cost models, devices without optical zoom are very rare.

Number of scene programs

The number of scene programs provided in the camera design.

Scene programs are preset settings for some of the most common shooting scenes - for example, Portrait, Landscape, Sports, Sunset, etc. In addition to these presets, this list may include special effects and creative tools (such as color swap or fisheye), as well as exposure modes (see below). The presence of scene programs is especially useful for beginners and non-professional photographers, as it eliminates the need to tinker with each setting separately - just select the most suitable program, and all the necessary settings will be set automatically. The more scene programs the camera design provides, the wider its automatic adjustment capabilities.

Exposure compensation

The ability to manually (or automatically, according to predetermined parameters) change the exposure parameters during shooting, that is, the amount of light falling on the matrix. It is used when the automatically selected exposure parameters do not give a satisfactory result — for example, in difficult conditions, when the illumination of the main subject and the background is very different. The camera's exposure compensation capabilities are recorded in the format "± x EV, in y EV increments", such as "± 3 EV, in 1/2 EV increments". The first digit indicates the maximum amount by which the exposure can be changed from the original value by the compensation process; the second is the step (step) with which the change occurs. EV is a specific unit of measure for exposure; a 1 EV change in exposure means a 2x change in the amount of light hitting the sensor. An increase in EV indicates an increase in the amount of light due to opening the aperture or an increase in shutter speed, a decrease indicates the opposite. All modern cameras with exposure compensation function are capable of producing it “in both directions”.

Auto bracketing

Bracketing is called shooting a series of frames, in which in each next frame the shooting parameters (exposure, white balance, focus, etc.) change by a certain amount. This allows, for example, to choose the most successful shot from several options, or to determine the effect of changing the settings in one direction or another. Auto bracketing allows you to take such shots automatically. At the same time, it should be taken into account that the set of parameters changed in the process may differ in different camera models. For example, some devices are able to change only the exposure, others — the exposure and/or white balance, etc.
Canon EOS M100 often compared
Sony A6000 often compared