USA
Catalog   /   Photo   /   Digital Cameras

Comparison Panasonic DMC-G80 kit 12-60 vs Panasonic DMC-G7 kit 14-42

Add to comparison
Panasonic DMC-G80  kit 12-60
Panasonic DMC-G7  kit 14-42
Panasonic DMC-G80 kit 12-60Panasonic DMC-G7 kit 14-42
Compare prices 20Compare prices 7
TOP sellers
Main
5-axis matrix stabilization. 4K video recording. Touch rotary display. Post focus function. Dust and water protection. Wide fleet of interchangeable optics.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
DxOMark rating71
Sensor
SensorLiveMOSCMOS (CMOS)
Sensor size
4/3" (17.3х13 mm) /17.3x13 mm/
4/3" (17.3х13 mm)
Total MP17
Effective MP number1616
Maximum image size4592x3448 px4592x3448 px
Light sensitivity (ISO)100-25600160-25600
Sensor cleaning
RAW format recording
No AA filter
Lens
Mount (bayonet)Micro 4/3Micro 4/3
Kit lens
Aperturef/3.5 - f/5.6f/3.5 - f/5.6
Focal length12 - 60 mm14 - 42 mm
Optical zoom53
Manual focus
Image stabilizationwith matrix shiftis absent
Photo shooting
HDR
2 control dials
White balance measuring
Exposure compensation± 5 EV, in 1/3 EV increments± 5 EV, in 1/3 EV increments
Auto bracketing
 /± 3 (3, 5, 7 frames at 1/3 EV, 2/3 EV, in 1 EV increments)/
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 pix 60 fps
Ultra HD (4K)3840x2160 pix 30 fps
File recording formatsMPEG-4, AVCHDMP4, AVCHD
Manual video focus
Maximum video length
 
memory limit
Connection ports
HDMI v 1.4
 
microphone Jack
micro HDMI v 1.4
headphone Jack
 
Focus
Autofocus modes
one shot
tracking
in face
one shot
tracking
 
Focus points49 шт
Touch focus
Contour enhancement
Viewfinder and shutter
Viewfinder
electronic /resolution 236k dots/
electronic /2360K pixels/
Viewfinder crop0.74 x
Frame coverage100 %100 %
Shutter speed
60-1/4000 sec /electronic shutter up to 1/16000/
60 - 1/16000 sec
Continuous shooting9 fps7 fps
Shutter typeelectronic/mechanicalelectronic/mechanical
Screen
Screen size3 ''3 ''
Screen resolution1040 thousand pixels1040 thousand pixels
Touch screen
Rotary display
Memory and communications
Memory cards typesSD, SDHC, SDXCSD, SDHC, SDXC
Communications
Wi-Fi
smartphone control
Wi-Fi 4 (802.11n)
 
Flash
Built-in flash
Application range6.2 m9.3 m
External flash connect
Power source
Power source
battery
battery
Shots per charge330 шт350 шт
General
Materialaluminium/plasticaluminium/plastic
Protectiondustproof, waterproof
Dimensions (WxHxD)128х89х74 mm125х86х77 mm
Weight715 g575 g
Color
Added to E-Catalogseptember 2016may 2015

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Sensor

— CCD (CCD). Abbreviation for Charge-Coupled Device. In such sensors, information is read from the photosensitive element according to the “line at a time” principle — an electronic signal is output to the image processor in the form of separate lines (there is also a “frame at a time” variant). In general, such matrices have good characteristics, but they are more expensive than CMOS. In addition, they are poorly suited for some specific conditions — for example, shooting with point light sources in the frame — which is why you have to use various additional technologies in the camera, which also affect the cost.

— CMOS (CMOS). The main advantages of CMOS matrices are ease of manufacture, low cost and power consumption, more compact dimensions than those of CCDs, and the ability to transfer a number of functions (focus, exposure metering, etc.) directly to the sensor, thus reducing the dimensions of the camera. In addition, the camera processor can read the entire image from such a matrix at once (rather than line by line, as in CCD); this avoids distortion when shooting fast-moving objects. The main disadvantage of CMOS is the increased possibility of noise, especially at high ISO values.

— CMOS (CMOS) BSI. BSI is an abbreviation for the English phrase "Backside Illumination". This is the name of "inverted" CMOS sensors, the light on which does not penetrate from the side of the photodiodes, but from the back of the matrix (from the side of the subst...rate). With this implementation, the photodiodes receive more light, since it is not blocked by other elements of the image sensor. As a result, back-illuminated sensors boast high light sensitivity, which allows you to create images of better quality with less noise when shooting in low light conditions. BSI CMOS sensors require less light to properly expose a photo. In production, back-illuminated sensors are more expensive than traditional CMOS sensors.

— LiveMOS. A variety of matrices made using the technology of metal oxide semiconductors (MOS, MOS — Metal-Oxide Semiconductor). Compared to CMOS sensors, it has a simplified design, which provides less tendency to overheat and, as a result, a lower noise level. It is well suited for the "live" viewing mode (viewing in real time) of the image from the matrix on the screen or in the camera's viewfinder, which is why it received the word "Live" in the title. They also feature high data transfer rates.

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

Sensor cleaning

The presence in the camera of a special mechanism for cleaning the matrix from dust and other contaminants.

This function is found only in models with interchangeable lenses — "reflex cameras" and MILC (see "Camera type"). When replacing the lens in such cameras, the sensor turns out to be open, and the probability of its contamination is quite high; and extraneous particles on the matrix, at best, lead to the appearance of extraneous artifacts, at worst, to damage to the sensor. To avoid this, cleaning systems are provided. They usually work on the principle of ultrasound: high-frequency vibration "resets" debris from the surface of the sensor.

Note that no cleaning system is perfect — in particular, such systems are “too tough” for condensate, salt deposits and other similar contaminants. So the matrix may still need manual cleaning (ideally, in a service centre). Nevertheless, this function allows you to effectively deal with at least dust, which greatly simplifies the life of the user.

No AA filter

No AA filter in camera design.

The AA filter is responsible for "anti-aliasing" — the elimination of the moiré effect. This effect can occur when shooting objects with a lot of thin horizontal or near-horizontal lines (for example, a brick wall at a great distance, or a suit made of a certain type of fabric). It leads to the appearance of a characteristic pattern in the picture, which, usually, is inappropriate; to eliminate this phenomenon, an AA filter is provided. At the same time, this feature is said to reduce the overall sharpness of the image; therefore, it may not be available in some cameras. These are mainly professional models: the absence of an AA filter gives the photographer additional features, but puts forward increased requirements for shooting skills.

Focal length

Focal length of the camera lens.

Focal length is such a distance between the camera matrix and the optical center of the lens, focused at infinity, at which a clear and sharp image is obtained on the matrix. For models with interchangeable lenses ( mirrorless cameras and MILC, see “Camera Type”), this parameter is indicated if the camera is supplied with a lens (“kit”); Let us recall that, if desired, optics with other characteristics can be installed on such a camera.

The longer the focal length, the smaller the viewing angle of the lens, the higher the degree of approximation and the larger the objects visible in the frame. Therefore, this parameter is one of the key for any lens and largely determines its application (specific examples are given below).

Most often in modern digital cameras, lenses with a variable focal length are used: such lenses are able to zoom in and out of the image (for more details, see "Optical Zoom"). For "DSLRs" and MILC, specialized optics with a constant focal length (fixed lenses) are produced. But in digital compacts, "fixes" are used extremely rarely, usually such a lens is a sign of a high-end model with specific characteristics.

It should be borne in mind that the actual focal length of the lens is usually given in the characteristics of the camera. And the viewing angles and the general purpose of the optics are determined not only by this parameter, but also...by the size of the matrix with which the optics are used. The dependence looks like this: at the same viewing angles, a lens for a larger matrix will have a longer focal length than a lens for a small sensor. Accordingly, only cameras with the same sensor size can be directly compared with each other in terms of lens focal length. However, to facilitate comparisons in the characteristics, the so-called. EGF - focal length in 35 mm equivalent: this is the focal length that a lens for a full frame matrix having the same viewing angles would have. You can compare by EGF lenses for any matrix size. There are formulas that allow you to independently calculate the equivalent of 35 mm, they can be found in special sources.

If we talk about a specific specialization, then the EGF up to 18 mm corresponds to ultra-wide-angle fisheye lenses. Wide-angle is considered "fixed" optics with EGF up to 28 mm, as well as vario lenses with a minimum EGF up to 35 mm. Values up to 60mm correspond to "general purpose" optics, 50 - 135mm are considered optimal for shooting portraits, and higher focal lengths are found in telephoto lenses. More detailed information about the specifics of various focal lengths can be found in special sources.

Optical zoom

The magnification factor provided by the camera by using the capabilities of the lens (namely, by changing its focal length). In models with interchangeable lenses (see “Camera type”), indicated for the complete lens, if available.

Note that in this case the magnification is indicated not relative to the image visible to the naked eye, but relative to the image produced by the lens at minimum magnification. For example, if the characteristics indicate an optical zoom of 3x, this means that at the maximum magnification, objects in the frame will be three times larger than at the minimum.

The degree of optical zoom is directly related to the range of focal lengths (see above). You can determine this degree by dividing the maximum focal length of the lens by the minimum, for example 360mm / 36mm=10x magnification.

To date, optical zoom provides the best "close" image quality and is considered to be superior to digital zoom (see below). This is due to the fact that with this format of work, the entire area of \u200b\u200bthe matrix is constantly involved, which allows you to fully use its capabilities. Therefore, even among low-cost models, devices without optical zoom are very rare.

Image stabilization

An image stabilization method provided by the camera. Note that systems of the optical type and with a sensor shift are sometimes combined under the term "true" stabilization - due to their effectiveness. See below for more on this.

By itself, stabilization (regardless of the principle of operation) allows you to compensate for the effect of "shake" with an unstable camera position - especially when shooting handheld. This is especially true when shooting with a significant increase or at slow shutter speeds. However, in any case, this function reduces the risk of spoiling the frame, so cameras with stabilization are extremely common. The principles of work can be as follows:

— Electronic. Stabilization, carried out due to a kind of "reserve" - a section along the edges of the sensor, which initially does not participate in the formation of the final image. However, if the camera electronics detect fluctuations, it compensates for them by selecting the necessary image fragments from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their work it is necessary to allocate a fairly significant part of the sensor - and reducing the usable area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is turned on only at lower resolutions and is not available at ful...l frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable lenses.

- Optical. Stabilization, carried out when light passes through the lens, is due to a system of movable lenses and gyroscopes. As a result, the image hits the sensor already stabilized, and the entire sensor area can be used for it. Therefore, optical systems, despite the complexity and rather high cost, are considered more preferable for high-quality filming than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera Type") the availability of this function depends on the lens installed; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the complete lens is equipped with a stabilizer).

- With sensor shift. Stabilization, carried out by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, systems with a sensor shift have serious advantages - first of all, the fact that such stabilization will work regardless of the characteristics of the lens. For cameras with fixed lenses, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, the sensor shift makes it possible to use even “non-stabilized” lenses with convenience, and when installing “stabilized” optics, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the options described above: initially it operates according to the optical principle, and when the capabilities of the lens are not enough, an electronic system is connected. This improves the overall efficiency compared to purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are relatively complex and expensive, and not all of the sensor is involved. Therefore, such a combination is rare, mainly in separate advanced digital compacts.

- With sensor shift and electronic. Another type of combined stabilization systems. Like “optical + electronic”, it improves the overall stabilization efficiency, but at the same time it combines the disadvantages of the two methods (they are also similar: the complication and rise in price of the camera, plus a decrease in the useful area of \u200b\u200bthe sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.
Panasonic DMC-G80 often compared
Panasonic DMC-G7 often compared