USA
Catalog   /   Photo   /   Digital Cameras

Comparison Sony A7r III body vs Sony A7r II body

Add to comparison
Sony A7r III  body
Sony A7r II  body
Sony A7r III bodySony A7r II body
Compare prices 6Compare prices 3
TOP sellers
Main
5-axis matrix stabilization. 4K video recording. Advanced autofocus system. High resolution OLED viewfinder. Touch screen tilt. Dust and water protection. Compact dimensions and light weight.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
DxOMark rating10098
Sensor
Sensor
CMOS (CMOS) BSI /bionz X processor/
CMOS (CMOS) BSI /bionz X processor/
Sensor size
full frame /35.9х24 мм/
full frame /35.9х24 мм/
Total MP4443.6
Effective MP number4242
Maximum image size7952x5304 px7952x5304 px
Light sensitivity (ISO)
100-32000 /in extended mode 50-102400 ISO/
50-25600 /ISO hardware expandable to 50-102400/
Sensor cleaning
RAW format recording
 /14-bit/
No AA filter
Lens
Mount (bayonet)Sony ESony E
Manual focus
Image stabilization
with matrix shift /can work with optical stabilization of the lens (5 axes will be involved)/
electronic
Photo shooting
Number of scene programs13
Frames per series (JPEG)24 шт
HDR
2 control dials
White balance measuring
Exposure compensation± 5 EV, in 1/2 or 1/3 EV increments± 5 EV, in 1/2 or 1/3 EV increments
Auto bracketing
 /± 5 (3.5 frames at 1/3 EV, 1/2 EV, 2/3 EV, 1 EV, 2 EV steps)/
 /± 5 (3.5 frames at 1/3 EV, 1/2 EV, 2/3 EV, 1 EV, 2 steps)/
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 pix 120 fps1920x1080 pix 60 fps
Ultra HD (4K)3840x2160 pix 30 fps3840x2160 pix 30 fps
File recording formatsMPEG-4, AVCHD, XAVC SMPEG-4, AVCHD, XAVC S
Manual video focus
Connection ports
HDMI v 1.4
headphone Jack
microphone Jack
HDMI v 1.4
headphone Jack
microphone Jack
Focus
Autofocus modes
one shot
tracking
in face
one shot
tracking
in face
Focus points
425 шт /399 phase/
399 шт
Touch focus
Contour enhancement
Viewfinder and shutter
Viewfinder
electronic /OLED, 3700K pixels/
electronic
Viewfinder crop0.78 x0.78 x
Frame coverage100 %100 %
Shutter speed30 -1/8000 sec30 -1/8000 sec
Continuous shooting10 fps5 fps
Shutter typemechanicalmechanical
Screen
Screen size3 ''3 ''
Screen resolution1440 thousand pixels1228 thousand pixels
Touch screen
Rotary display
Memory and communications
2 card slots
Memory cards typesSD, SDHC, SDXC, MemoryStickSD, SDHC, SDXC, MemoryStick
Communications
Wi-Fi 4 (802.11n)
NFC
smartphone control
Wi-Fi 4 (802.11n)
NFC
smartphone control
Flash
Built-in flash
External flash connect
flash X-sync1/250 sec
Power source
Power source
battery
battery
Battery modelNP-FZ100NP-FW50, VG-C1EM
Battery capacity1080 mAh
Shots per charge650 шт290 шт
General
Charger modelBC-TRW, BC-QM1
Console/synchronizer modelRM-VPR1, RMT-DSLR2
Protectiondustproof, waterproofdustproof, waterproof
Dimensions (WxHxD)127х96х74 mm127х96х60 mm
Weight657 g625 g
Color
Added to E-Catalogoctober 2017june 2015

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

No AA filter

No AA filter in camera design.

The AA filter is responsible for "anti-aliasing" — the elimination of the moiré effect. This effect can occur when shooting objects with a lot of thin horizontal or near-horizontal lines (for example, a brick wall at a great distance, or a suit made of a certain type of fabric). It leads to the appearance of a characteristic pattern in the picture, which, usually, is inappropriate; to eliminate this phenomenon, an AA filter is provided. At the same time, this feature is said to reduce the overall sharpness of the image; therefore, it may not be available in some cameras. These are mainly professional models: the absence of an AA filter gives the photographer additional features, but puts forward increased requirements for shooting skills.

Image stabilization

An image stabilization method provided by the camera. Note that systems of the optical type and with a sensor shift are sometimes combined under the term "true" stabilization - due to their effectiveness. See below for more on this.

By itself, stabilization (regardless of the principle of operation) allows you to compensate for the effect of "shake" with an unstable camera position - especially when shooting handheld. This is especially true when shooting with a significant increase or at slow shutter speeds. However, in any case, this function reduces the risk of spoiling the frame, so cameras with stabilization are extremely common. The principles of work can be as follows:

— Electronic. Stabilization, carried out due to a kind of "reserve" - a section along the edges of the sensor, which initially does not participate in the formation of the final image. However, if the camera electronics detect fluctuations, it compensates for them by selecting the necessary image fragments from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their work it is necessary to allocate a fairly significant part of the sensor - and reducing the usable area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is turned on only at lower resolutions and is not available at ful...l frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable lenses.

- Optical. Stabilization, carried out when light passes through the lens, is due to a system of movable lenses and gyroscopes. As a result, the image hits the sensor already stabilized, and the entire sensor area can be used for it. Therefore, optical systems, despite the complexity and rather high cost, are considered more preferable for high-quality filming than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera Type") the availability of this function depends on the lens installed; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the complete lens is equipped with a stabilizer).

- With sensor shift. Stabilization, carried out by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, systems with a sensor shift have serious advantages - first of all, the fact that such stabilization will work regardless of the characteristics of the lens. For cameras with fixed lenses, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, the sensor shift makes it possible to use even “non-stabilized” lenses with convenience, and when installing “stabilized” optics, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the options described above: initially it operates according to the optical principle, and when the capabilities of the lens are not enough, an electronic system is connected. This improves the overall efficiency compared to purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are relatively complex and expensive, and not all of the sensor is involved. Therefore, such a combination is rare, mainly in separate advanced digital compacts.

- With sensor shift and electronic. Another type of combined stabilization systems. Like “optical + electronic”, it improves the overall stabilization efficiency, but at the same time it combines the disadvantages of the two methods (they are also similar: the complication and rise in price of the camera, plus a decrease in the useful area of \u200b\u200bthe sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.

Number of scene programs

The number of scene programs provided in the camera design.

Scene programs are preset settings for some of the most common shooting scenes - for example, Portrait, Landscape, Sports, Sunset, etc. In addition to these presets, this list may include special effects and creative tools (such as color swap or fisheye), as well as exposure modes (see below). The presence of scene programs is especially useful for beginners and non-professional photographers, as it eliminates the need to tinker with each setting separately - just select the most suitable program, and all the necessary settings will be set automatically. The more scene programs the camera design provides, the wider its automatic adjustment capabilities.

Frames per series (JPEG)

The highest number of shots a camera can capture “in one go” in JPEG continuous shooting.

The technical features of modern digital cameras are such that during continuous shooting, photos have to be recorded in a special buffer, and only then, after the end of the series, they can be copied to a memory card. This buffer has a limited size, so the number of frames in one series is also limited. At the same time, we note that this indicator is usually indicated for shooting at the highest possible resolution (see "Maximum image size"); at lower resolutions, the volume of each image is reduced, and the number of frames in the series may turn out to be more than stated in the specifications.

JPEG, the most popular digital photography format today, is smaller and requires less processing power than RAW (see "Recording in RAW Format"). Therefore, in a JPEG series, as a rule, more frames are available to the photographer. However, in some models that have two separate buffers (for RAW and JPEG), it may be the other way around.

Full HD (1080)

The maximum resolution and frame rate of video captured by the camera in Full HD (1080p).

The traditional Full HD video resolution in this case is 1920x1080; other options are more specific and practically do not occur in modern cameras. Regarding the frame rate, it is worth noting first of all that a normal (not slow-motion) video is shot at a speed of up to 60 fps, and in this case, the higher the frame rate, the smoother the video will be, the less jerks will be noticeable when moving in the frame. If the frame rate is 100 fps or higher, this usually means that the camera has a slow-motion video mode.

Focus points

The number of focus points (autofocus) provided in the design of the camera.

The focus point is the point (more precisely, a small area) in the frame from which the autofocus system reads data for focusing. The simplest systems work with a single point, but their capabilities are very limited, and this option is practically not found today. Modern digital cameras have at least three focus sensors, and in the most advanced models this figure can reach several dozen.

The more autofocus sensors there are in the camera, the more advanced its autofocus capabilities will be, the more specific techniques it allows you to use. In this case, the selection of specific points used can be carried out both automatically, simultaneously with the choice of the subject program, and manually (however, the second option is more typical for professional cameras). In addition, the abundance of focus points has a positive effect on the quality of the tracking autofocus (see "Autofocus Modes").

In general, more focus sensors are generally considered a sign of a more advanced camera; however, differences in quality become really noticeable only if the difference in the number of points is significant - for example, if we compare models with 9 and 39 points. A lot also depends on the location of the points in the frame - it is believed that sensors distributed over a wide area work better than densely located in the center of the frame, even if their number is the same.
Sony A7r III often compared
Sony A7r II often compared