USA
Catalog   /   Computing   /   Components   /   Hard Drives

Comparison WD Blue WD20EZRZ 2 TB
EZRZ
vs Toshiba P300 HDWD120EZSTA 2 TB
CMR

Add to comparison
WD Blue WD20EZRZ 2 TB EZRZ
Toshiba P300 HDWD120EZSTA 2 TB CMR
WD Blue WD20EZRZ 2 TB
EZRZ
Toshiba P300 HDWD120EZSTA 2 TB
CMR
from $32.49 
Outdated Product
from $145.00 
Outdated Product
TOP sellers
Placementbuilt-inbuilt-in
TypeHDDHDD
FeaturespCpC
Size2000 GB2000 GB
Form factor3.5 "3.5 "
ConnectionSATA3SATA3
Manufacturer's warranty2 years2 years
Technical specs
Cache memory64 MB64 MB
Record technologyCMRCMR
RPM5400 rpm7200 rpm
Data transfer rate147 MB/s173 MB/s
Average search time4 ms
Operation power consumption4.1 W6.4 W
Standby power consumption3 W5.2 W
Shockproof65 G70 G
Reading noise level27 dB28 dB
Standby mode noise level23 dB27 dB
MTBF300 K
General
Size147x102x26 mm147x102x26 mm
Weight600 g680 g
Added to E-Catalognovember 2015november 2015

RPM

For drives used in a PC (see "Intended use"), 5400 rpm(normal) and 7200 rpm(high) are considered standard speeds. There are also more specific options, including models with the ability to adjust the speed depending on the load. In server HDDs, in turn, higher speeds can be used — 10,000 rpm and even 15,000 rpm.

Data transfer rate

The speed of data transfer between the disk and client devices is determined by the type of drive, spindle speed, memory buffer size and connection connectors. The last parameter is the most important, since it is impossible to exceed the bandwidth of a particular interface.

Average search time

The time it takes for the hard disk mechanics to find random requested data to read. For each specific case, the search time is different, as it depends on the location of the data on the surface of the disk and the position of the read head, therefore, the average value is indicated in the characteristics of hard drives. The lower the average seek time, the faster the disk works, all other things being equal.

Operation power consumption

The amount of power consumed by the disk when reading and writing information. In fact, this is the peak power consumption, it is in these modes that the drive consumes the most energy.

HDD power consumption data is needed primarily to calculate the overall system power consumption and power supply requirements for the system. In addition, for laptops that are planned to be used often "in isolation from outlets", it is advisable to choose more economical drives.

Standby power consumption

The amount of power consumed by the disk "idle". In the on state, the disk platters rotate regardless of whether information is being written or read or not — maintaining this rotation takes the energy consumed while waiting.

The lower the power consumption while waiting, the more economical the disk is, the less energy it consumes. At the same time, we note that in fact this parameter is relevant mainly when choosing a drive for a laptop, when energy efficiency is crucial. For stationary PCs, “idle” power consumption does not play a special role, and when calculating the requirements for a power supply, it is necessary to take into account not this indicator, but the power consumption during operation (see above).

Shockproof

A parameter that determines the resistance of the hard drive to drops and shocks during operation (that is, in the on state). Shock resistance is measured in G — units of overload, 1 G corresponds to the usual force of gravity. The higher the G number, the more resistant the disc is to various kinds of concussions and the less likely it is to be damaged, say, in the event of a fall. This setting is especially important for external drives and drives used in laptops.

Reading noise level

The level of noise produced by the disk when reading and/or writing information. The source of sound in this case is the moving plates of the disk, as well as the mechanics that control the reading heads. The lower the noise level, the more comfortable the use of the device. The maximum noise produced by modern hard drives during operation is about 50 dB — this is comparable to the sound background in an average office.

Standby mode noise level

The amount of noise produced by a disk "idle", when no read and/or write operations are performed. The sound source in this case is the plates — they rotate all the time while the disk is on; since no other mechanics are involved, idle noise is generally lower than read/write noise. The lower the noise level, the more comfortable the use of the device. The maximum noise level of modern hard drives in standby mode is about 40 dB — this is comparable to quiet human speech.

MTBF

Guaranteed (minimum) number of hard drive on-off cycles after which it will remain operational. The higher this number, the more reliable the drive.
WD Blue often compared
Toshiba P300 often compared