USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus H110M-K vs Asus M5A78L-M LX3

Add to comparison
Asus H110M-K
Asus M5A78L-M LX3
Asus H110M-KAsus M5A78L-M LX3
Compare prices 6
from $46.32 up to $59.28
Outdated Product
TOP sellers
Featuresfor home/officefor home/office
SocketIntel LGA 1151AMD AM3+
Form factormicro-ATXmicro-ATX
Power phases5
Size (HxW)226x183 mm244x188 mm
Chipset
ChipsetIntel H110AMD 760G
SouthbridgeAMD SB710
BIOSAmiAmi
UEFI BIOS
RAM
DDR32 slot(s)
DDR42 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency2133 MHz1866 MHz
Max. memory32 GB16 GB
XMP
Drive interface
SATA 3 (6Gbps)4
Integrated RAID controller
 /RAID 0, 1, 10, JBOD/
Expansion slots
1x PCI-E slots21
PCI-E 16x slots11
PCI Express3.02.0
PCI slots1
Video outputs
Integrated graphics
Integrated graphics modelATI Radeon HD 3000
Hybrid mode
D-Sub output (VGA)
DVI outputDVI-D
Integrated audio
AudiochipRealtek ALC887Realtek ALC887
Sound (channels)7.17.1
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerRealtek RTL8111H
External connections
USB 2.044
USB 3.2 gen12
PS/222
COM port
Power connectors
Main power socket24 pin24 pin
CPU power4 pin4 pin
Fan power connectors22
Added to E-Catalognovember 2015november 2013

Socket

The socket type (processor slot) that the motherboard is equipped with. Different processor models have different socket types, and before buying a motherboard, it is worth checking separately whether the socket type on it corresponds to the socket type for the desired processor.

Accordingly, motherboard manufacturers present platforms for current Intel 1200, 1700, 1851 and AMD AM4, AM5 processors.

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

Size (HxW)

Motherboard dimensions in height and width. It is assumed that the traditional placement of motherboards is vertical, so in this case one of the dimensions is called not the length, but the height.

Motherboard sizes are largely determined by their form factors (see above), however, the size of a particular motherboard may differ slightly from the standard adopted for this form factor. In addition, it is usually easier to clarify the dimensions according to the characteristics of a particular motherboard than to look for or remember general information on the form factor. Therefore, size data can be given even for models that fully comply with the standard.

The third dimension — thickness — is considered less important for a number of reasons, so it is often omitted.

Chipset

The chipset model installed in the motherboard. AMD's current chipset models are B450, A520, B550, X570, A620, B650, B650E, X670, X670E, X870, X870E.. For Intel, in turn, the list of chipsets looks like this: X299, H410, B460, H470, Z490, H510, B560, H570, Z590, H610, B660, H670, Z690, B760, Z790, Z890.

A chipset is a set of chips on the motherboard through which the individual components of the system interact directly: the processor, RAM, drives, audio and video adapters, network controllers, etc. Technically, such a set consists of two parts — the north and sou...th bridges. The key element is the northbridge, it connects the processor, memory, graphics card and the southbridge (together with the devices it controls). Therefore, it is often the name of the north bridge that is indicated as the chipset model, and the south bridge model is specified separately (see below); it is this scheme that is used in traditional layout motherboards, where bridges are made in the form of separate microcircuits. There are also solutions where both bridges are combined in one chip; for them, the name of the entire chipset can be indicated.

Anyway, knowing the chipset model, you can find various additional data on it — from general reviews to special instructions. An ordinary user, usually, does not need such information, but it can be useful for various professional tasks.

Southbridge

Model of the south bridge installed in the motherboard.

This component of the "motherboard" is one of the constituent parts of the chipset. See above for details on the chipset; here we note that the south bridge is responsible for the interaction of the motherboard with peripheral devices: expansion cards (sound, network), drives, external USB peripherals, etc. Knowing the name of this module, if necessary, you can easily find detailed information about its characteristics and capabilities. An ordinary user, usually, does not need such information, but it can be useful for various professional tasks.

UEFI BIOS

The presence of UEFI BIOS firmware on the motherboard.

Such firmware is usually combined with one of the classic "bios" (see BIOS). In fact, it is an additional add-on that expands the BIOS and makes it more convenient to manage. In some ways, UEFI approaches a full-fledged operating system: it has a convenient and understandable graphical interface even for a non-specialist, supports mouse control, is equipped with an extensive set of tools, and in some versions there is even the ability to access the Internet. In addition, this firmware takes into account all the features of modern computer hardware — including those that have appeared recently and are not covered in earlier, traditional BIOSes.

DDR3

The number of slots for DDR3 memory sticks provided in the motherboard.

DDR3 is the third generation of RAM with the so-called double data transfer. Some time ago, this standard was the most popular in computer technology, but now it is increasingly losing ground to the newer and more advanced DDR4. However, DDR3 boards are still on the market; they can have 2, 4, or even 6 or more slots for such memory.

DDR4

The number of slots for DDR4 memory sticks provided in the motherboard.

DDR4 is a further (after the third version) development of the DDR standard, released in 2014. Improvements compared to DDR3 are traditional — an increase in operating speed and a decrease in power consumption; The volume of one module can be from 2 to 128 GB. It is this RAM standard that most modern motherboards are designed for; the number of slots for DDR4 is usually 2 or 4, less often — 6 or more.

Max. clock frequency

The maximum RAM clock speed supported by the motherboard. The actual clock frequency of the installed RAM modules should not exceed this indicator — otherwise, malfunctions are possible, and the capabilities of the “RAM” cannot be used to the fullest.

For modern PCs, a RAM frequency of 1500 – 2000 MHz or less is considered very low, 2000 – 2500 MHz is modest, 2500 – 3000 MHz is average, 3000 – 3500 MHz is above average, and the most advanced boards can support frequencies of 3500 – 4000 MHz and even more than 4000 MHz.
Asus H110M-K often compared
Asus M5A78L-M LX3 often compared