USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus Maximus X Hero vs Asus Maximus X Hero (Wi-Fi AC)

Add to comparison
Asus Maximus X Hero
Asus Maximus X Hero (Wi-Fi AC)
Asus Maximus X HeroAsus Maximus X Hero (Wi-Fi AC)
Outdated ProductOutdated Product
TOP sellers
Main
Rear BIOS and CMOS reset buttons.
Rear BIOS and CMOS reset buttons.
Featuresgaming for overclockinggaming for overclocking
SocketIntel LGA 1151 v2Intel LGA 1151 v2
Form factorATXATX
Power phases10
VRM heatsink
LED lighting
Lighting syncAsus Aura SyncAsus Aura Sync
Size (HxW)305x244 mm305x244 mm
Chipset
ChipsetIntel Z370Intel Z370
BIOSAmiAmi
UEFI BIOS
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency4133 MHz4133 MHz
Max. memory64 GB64 GB
XMP
Drive interface
SATA 3 (6Gbps)66
M.2 connector22
M.21xSATA/PCI-E 4x, 1xPCI-E 4x1xSATA/PCI-E 4x, 1xPCI-E 4x
M.2 SSD cooling
Integrated RAID controller
 /RAID 0, RAID 1, RAID 5, RAID 10/
 /RAID 0, RAID 1, RAID 5, RAID 10/
Expansion slots
1x PCI-E slots33
PCI-E 4x slots1
PCI-E 8x slots1
PCI-E 16x slots31
PCI Modes16x/0x/4x, 8x/8x/4x
PCI Express3.03.0
CrossFire (AMD)
SLI (NVIDIA)
Steel PCI-E connectors
Internal connections
USB 2.02
USB 3.2 gen11
USB 3.2 gen21
Video outputs
HDMI output
DisplayPort
Integrated audio
AudiochipSupremeFXSupremeFX
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
Wi-FiWi-Fi 5 (802.11aс)
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerIntel I219VIntel I219V
External connections
USB 2.022
USB 3.2 gen14
USB 3.2 gen21
/4xGen 1, 1xGen 2/
USB C 3.2 gen21
BIOS FlashBack
Clear CMOS
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors77
Added to E-Catalogoctober 2017october 2017

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

PCI-E 4x slots

Number of PCI-E (PCI-Express) 4x slots installed on the motherboard.

The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. 4 PCI-E lanes provide data transfer speeds of about 4 GB/s for PCI-E version 3.0 and 8 GB/s for version 4.0 (for more information about the versions, see "PCI Express Support").

The general rule for PCI-E is this: the card must be connected to a slot with the same or more lanes. Thus, boards for 1 or 4 PCI Express lanes can be installed in a standard PCI-E 4x slot. However, it is worth noting that in the design of modern "motherboards" there are slots of increased sizes — in particular, PCI-E 4x, corresponding in size to PCI-E 16x. The type of such slots in our catalog is indicated by the actual throughput, that is, the mentioned example will also be counted as PCI-E 4x. At the same time, peripherals with 16 PCI-E channels can also be physically connected to this connector — however, you should make sure that the throughput will be sufficient for the normal operation of such peripherals.

PCI-E 8x slots

The number of PCI-E 8x slots installed on the motherboard. This is an eight-lane version of the PCI-Express connection bus, with a minimum throughput of 16 Gbps one way (32 Gbps both). For more information about the PCI-Express standard, see "PCI-E 1x Slots".

PCI-E 16x slots

Number of PCI-E (PCI-Express) 16x slots installed on the motherboard.

The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. 16 lanes is the largest number found in modern PCI Express slots and cards (more is technically possible, but the connectors would be too bulky). Accordingly, these slots are the fastest: they have a data transfer rate of 16 GB / s for PCI-E 3.0 and 32 GB / s for version 4.0 (for more information about the versions, see "PCI Express Support").

Separately, we note that it is PCI-E 16x that is considered the optimal connector for connecting video cards. However, when choosing a motherboard with several such slots, it is worth considering the PCI-E modes supported by it (see below). In addition, we recall that the PCI Express interface allows you to connect boards with a smaller number of lines to connectors with numerous lines. Thus, PCI-E 16x will fit any PCI Express card.

It is also worth mentioning that in the design of modern "motherboards" there are slots of increased sizes — in particular, PCI-E 4x, corresponding in size to PCI-E 16x. However, the type of PCI-E slots in our catalog is indicated by the actual throughput; so only connectors that support 16x speed are considered as PCI-E 16x.

PCI Modes

Operating modes of PCI-E 16x slots supported by the motherboard.

For more information about this interface, see above, and information about the modes is indicated if there are several PCI-E 16x slots on the board. This data specifies at what speed these slots can operate when expansion cards are connected to them at the same time, how many lines each of them can use. The fact is that the total number of PCI-Express lanes on any motherboard is limited, and they are usually not enough for the simultaneous operation of all 16-channel slots at full capacity. Accordingly, when working simultaneously, the speed inevitably has to be limited: for example, recording 16x / 4x / 4x means that the motherboard has three 16-channel slots, but if three video cards are connected to them at once, then the second and third slots will be able to give speed only to PCI-E 4x level. Accordingly, for a different number of slots and the number of digits will be appropriate. There are also boards with several modes — for example, 16x/0x/4 and 8x/8x/4x (0x means that the slot becomes inoperable altogether).

You have to pay attention to this parameter mainly when installing several video cards at the same time: in some cases (for example, when using SLI technology), for correct operation of video adapters, they must be connected to slots at the same speed.

USB 2.0

The number of USB 2.0 connectors provided on the motherboard.

USB connectors (all versions) are used to connect to the "motherboard" USB ports located on the front panel of the case. With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of front USB connectors that can be used with it.

Specifically, USB 2.0 is the oldest version widely used nowadays. It provides data transfer rates up to 480 Mbps, is considered obsolete and is gradually being replaced by more advanced standards, primarily USB 3.2 gen1 (formerly USB 3.0). Nevertheless, a lot of peripherals are still being produced under the USB 2.0 connector: the capabilities of this interface are quite enough for most devices that do not require a high connection speed.

USB 3.2 gen1

The number of USB 3.2 gen1 connectors provided on the motherboard.

USB connectors (all versions) are used to connect to the "motherboard" USB ports located on the outside of the case (usually on the front panel, less often on the top or side). With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of case USB connectors that can be used with it. At the same time, we note that in this case we are talking about traditional USB A connectors; connectors for newer USB-C are mentioned separately in the specifications.

Specifically, USB 3.2 gen1 (formerly known as USB 3.1 gen1 and USB 3.0) provides transfer speeds of up to 4.8 Gbps and more power than the earlier USB 2.0 standard. At the same time, USB Power Delivery technology, which allows you to reach power up to 100 W, is usually not supported by this version of USB A connectors (although it can be implemented in USB-C connectors).

USB 3.2 gen2

The number of USB 3.2 gen2 connectors provided on the motherboard.

USB connectors (all versions) are used to connect to the "motherboard" USB ports located on the outside of the case (usually on the front panel, less often on the top or side). With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of case USB connectors that can be used with it. At the same time, we note that in this case we are talking about traditional USB A connectors; connectors for newer USB-C are mentioned separately in the specifications.

As for the USB 3.2 gen2 version specifically (formerly known as USB 3.1 gen2 and USB 3.1), it works at speeds up to 10 Gbps. In addition, such connectors may provide support for USB Power Delivery technology, which allows you to output power up to 100 W per connector; however, this function is not mandatory, its presence should be clarified separately.

Wi-Fi

Wi-Fi version (standard) supported by the motherboard Wi-Fi module. The main function of such modules, regardless of version, is Internet access via wireless routers; however, Wi-Fi can also be used to communicate directly with other devices—for example, to transfer content from a digital camera or control it remotely.

Nowadays you can find support for different Wi-Fi standards (up to Wi-Fi 6, Wi-Fi 6E, Wi-Fi 7). The maximum connection speed primarily depends on this nuance. At the same time, different versions also differ in the ranges used; and they are compatible with each other if they coincide in the ranges used. However, wireless modules of modern motherboards often support not only the Wi-Fi standard specified in the specifications, but also earlier ones; It doesn’t hurt to clarify this point separately, but in most cases there are no compatibility problems. However, to use all the features of a particular version, it must be supported by both devices - both the motherboard and the external device.

The list of major versions looks like this:

- Wi-Fi 3 (802.11g). The oldest standard that is relevant today, in its pure form, is found only in frankly outdated boards. Operates at speeds up to 54 Mbps in the 2.4 GHz band.
— Wi-fi 4 (802.11n). Quite a popular standard, which has only recently begun to give w...ay to more advanced options. Supports both the 2.4 GHz band and the more advanced 5 GHz band, and the maximum data transfer rate is 150 Mbps per channel (up to 600 Mbps with 4 antennas).
— Wi-Fi 5 (802.11ac). Works only on 5 GHz. Initially, the maximum theoretical data transfer rate was 1300 Mbit/s, but since 2016 the 802.11ac Wave 2 standard has been used, where this figure has been increased to 2.34 Gbit/s.
- Wi-Fi 6 (802.11ax). It initially operates on two bands - 2.4 GHz and 5 GHz - but the specification of this standard provides for the possibility of using any operating band between 1 GHz and 7 GHz (as such bands become available). The nominal data transfer speed has increased by only a third compared to Wi-Fi 5, but a number of improvements that increase communication efficiency allow for a significant increase in actual speed - in theory, up to 10 Gbps and even higher.
- Wi-Fi 6E (802.11ax). An improved branch of the Wi-Fi 6 standard with data transfer speeds up to 10 Gbps. The Wi-Fi 6E standard is technically called 802.11ax. But unlike basic Wi-Fi 6, which is named similarly, it provides for operation in the unused 6 GHz band. In total, the standard uses 14 different frequency bands, offering high throughput with many active connections.
— Wi-Fi 7 (802.11be). The technology, like the previous Wi-Fi 6E, is capable of operating in three frequency ranges: 2.4 GHz, 5 GHz and 6 GHz. At the same time, the maximum bandwidth in Wi-Fi 7 was increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit. The IEEE 802.11be standard uses 4096-QAM modulation, which also allows more symbols to be accommodated in a data transmission unit. From Wi-Fi 7 you can squeeze out a maximum theoretical information exchange rate of up to 46 Gbps. In the context of using wireless connections for streaming and video games, the implemented MLO (Multi-Link Operation) development seems very interesting. With its help, you can aggregate several channels in different ranges, which significantly reduces delays in data transmission and ensures low and stable ping. And Multi-RU (Multiple Resource Unit) technology is designed to minimize communication delays when there are many connected client devices.
Asus Maximus X Hero often compared