USA
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   Plotter Printers

Comparison HP DesignJet T830 (F9A30A) vs HP DesignJet T2500 (CR359A)

Add to comparison
HP DesignJet T830 (F9A30A)
HP DesignJet T2500 (CR359A)
HP DesignJet T830 (F9A30A)HP DesignJet T2500 (CR359A)
from $5,348.22 
Expecting restock
from $17,985.00
Outdated Product
TOP sellers
Product Typeinkjetinkjet
Paper sizeA0A0
Output Typecolourcolour
Placementfloorfloor
Scanner
Printing
Max resolution2400x1200 dpi2400x1200 dpi
Sheet printing time
25 sec /A1/
Drop volume5 pl
Sheet printing
Roll printing
 /automatic front feeding of two rolls/
Specs
Media width (min)210 mm210 mm
Media width (max)914 mm914 mm
Max. roll diameter140 mm
Number of rolls11
Paper grammage (min)60 g/m²60 g/m²
Paper grammage (max)328 g/m²328 g/m²
Data transfer
 
network connection (LAN)
USB (for flash drives)
Wi-Fi 4 (802.11n)
Wi-Fi Direct
AirPrint
PC connection (USB)
network connection (LAN) /1000 Base-T/
 
 
 
 
General
Number of cartridges46
Cartridge modelF9J61A, F9J62A, F9J63A, F9J64AC1Q11A, B3P17A, B3P18A, B3P15A, B3P14A, B3P13A
Built-in memory1024 MB1536 MB
Storage capacity320 GB320 GB
Displaytouchtouch
Noise level48 dB47 dB
Power consumption35 W
Dimensions with stand (WxDxH)1403x629x1155 mm1399x916x1110 mm
Weight62.5 kg112 kg
Added to E-Catalogapril 2016august 2014

Scanner

The presence of a built-in scanner in the plotter.

This function actually turns the plotter into an MFP (multifunctional device): the scanner allows you to digitize printed materials, as well as use the unit as a copier (however, this possibility should be specified separately). At the same time, built-in scanners, like the plotters themselves, are usually designed for large-format media. In addition, such equipment can be combined with various additional features — in particular, some devices with a scanner can not only send digitized materials to a PC, but also save them to a flash drive or memory card, and even send them to e-mail, network storage or an Internet resource.

Sheet printing time

Approximate time taken by the plotter to print one sheet.

This indicates for the paper size that the machine was originally designed for (see "Paper Size"). And it is approximate because it is usually given for optimal or almost optimal printing conditions: low quality and resolution, relatively simple images, etc. So the actual print time of the sheet may differ from the claimed one in one direction or another, depending on the operating parameters — starting from the mentioned quality and resolution to the type of media. However, according to the figures indicated in the specs, it is quite possible to evaluate different models and compare them with each other: the difference in the claimed time, usually, will proportionally correspond to the difference in the actual printing speed.

It is also worth noting that this time is usually indicated by the duration of the printing process itself — from the capture of the sheet by the feeder to the output of the completed print from the device. Interruptions inevitably occur between printing individual sheets, so that the total printing time is longer than the printing time of a sheet multiplied by the number of sheets. For example, a device with a time consumption of 36 sec per sheet theoretically should print about 100 sheets per hour (1 h = 3600 s, 3600/36 = 100), but in fact such a plotter usually produces about 70 – 75 sheets in this time.

Drop volume

The smallest drop volume of ink that can be produced by the printhead of an inkjet or similar plotter (see "Product Type").

This parameter is directly related to the print resolution (see “Maximum resolution”): the more dots per inch, the smaller the separate dots and, accordingly, the drops should be. At the same time, models with the same dpi number may differ slightly in this parameter. In such cases, it should be assumed that a smaller droplet volume potentially provides better print quality, with more accurate reproduction of fine lines and borders between individual areas of the image, however, such features accordingly affect the price of the device.

Max. roll diameter

The largest roll diameter that can be installed in a plotter with roll printing (see above). This parameter is useful primarily for the selection of media: the material of the same width can be produced in rolls of different diameters.

Data transfer

Data transfer supported by the plotter.

In addition to direct connection to a PC via USB, supported by the vast majority of such devices, connection to PC network is very popular nowadays — usually via a wired LAN port, and often via Wi-Fi. The last one may additionally support special modes of operation — Wi-Fi Direct and/or . You can also find plotters with support of external media — in the form of a card reader or its own USB port for flash drives.

Here is a more detailed description of each of these options:

— Connection to a PC (USB). Connecting to a standard USB port on a PC or laptop is a classic data transfer format found in almost all modern plotters. It allows you to send print tasks to the device, manage settings, receive various operation notifications on your PC, save digitized materials from the built-in scanner (if available — see above), etc. The disadvantages of this connection include the fact that it is designed for interaction between the plotter and only one specific PC. Anyway, you can also manage a network sharing on this PC — but this is quite complicated; it is easier to immediately select a device with network connectivity (see below).

— Network connection (LAN).... LAN connection via wired LAN interface. By itself, network connectivity at least makes the plotter accessible from any PC on the local network; and some models even allow to be used over the Internet. In addition, such devices may provide various specific network functions — for example, sending materials from a scanner to file storage or e-mail. A wired connection is not as convenient as Wi-Fi — in fact, because of the need to run a wire — but it is cheaper, and it also provides a more stable and reliable connection, not dependent on obstacles and interference levels near the device.

— USB (for flash drives). USB port for connecting various external media, installed in the plotter. In addition to flash drives, this connector can be used for external HDDs, as well as for cameras and many other portable devices with built-in storage. In any case, such a connection is mainly used for direct printing — sending files for printing without using a PC. And if you have a scanner (see above), you can also copy scanned materials to an external device via the USB port. Navigation through the contents of external media is usually carried out using the display installed on the plotter.

— Card reader. Built-in memory card reader — most often SD format (although specific types and volumes of supported cards should be clarified separately, since the SD standard covers several subspecies of media). The use of this function is generally similar to the USB port for flash drives described above — it makes it possible to print files directly from external media, as well as save data received from the scanner (if available) to this media. Memory cards are now supported in many types of electronic devices — in particular, laptops are almost always equipped with card readers, and in digital cameras this type of media is used as a standard for saving footage. Accordingly, the presence of a card reader in the plotter facilitates data exchange with such equipment: removing and inserting a card is often easier than copying materials to a computer or fiddling with a direct USB connection (if it is available at all).

— WiFi. The presence of its own Wi-Fi module allows the plotter to connect to PC network, as well as use special features such as Wi-Fi Direct and Airprint. See below for such features; as for the network connection, it provides all the same features as the wired LAN standard described above. At the same time, a Wi-Fi connection is much more convenient, as it allows you to do without laying cables. True, such a connection is somewhat more expensive, besides, the data transfer rate may drop with an abundance of interference; however, for plotters, the last one is most often not critical, and the price of a Wi-Fi module is often insignificant compared to the price of the entire device. So most modern network models support not only wired, but also wireless connections.
Specifications may also specify the Wi-Fi standard used by the device; most often it is Wi-Fi 4 or Wi-Fi 5. However, the difference between these standards in this case is not fundamental: both of them provide sufficient speed for functions implemented in plotters, and modern wireless equipment usually provides compatibility with all major Wi-Fi standards .

— WiFi Direct. A feature found on models with built-in Wi-Fi modules (see above). Direct support allows you to connect other Wi-Fi devices (laptops, smartphones, cameras, etc.) to such a plotter directly, without using a router and a local network. This can be especially convenient if there is no network equipment, or if it needs to be additionally configured. The set of functions available with this connection includes, at least, sending materials to print; however, control of plotter settings and other more specific features may also be provided.

— AirPrint. Wireless direct printing technology found on Apple devices such as iPhones, iPads, MacBooks, and more. AirPrint printing is convenient and simple—it requires no additional setup when connected to a plotter and can be done with just one touch ". In this case, communication with the printing device is carried out via Wi-Fi directly — similar to the Wi-Fi Direct described above (in fact, AirPrint is usually provided as an addition to this mode).

Number of cartridges

The number of individual cartridges the plotter needs to operate.

Each cartridge is responsible for its base colour used in printing. Monochrome plotters (see "Output Type"), by definition, use only one cartridge, for black colour and for such devices this parameter is usually not specified at all. But in colour printing, where all available shades are obtained by mixing basic colours, the number of such colours (and, accordingly, cartridges) can be different.

The most modest of modern colour plotters are designed to work with 4 or 5 cartridges. The first option corresponds to the CMYK colour scheme with 4 basic colours — this is the minimum required for full colour printing. In turn, 5 cartridges usually mean a CMYK colour scheme, supplemented by a separate supply of black ink for monochrome images — this allows you not to waste consumables for such images that may be needed for colour prints, and also to print monochrome even with empty colour cartridges, and vice versa.

In general, these sets of basic colours are inexpensive, while they are able to provide fairly good quality prints; so plotters for 4 – 5 cartridges are very popular nowadays. However, the use of additional basic colours can significantly increase the quality of the image, primarily the reliability of colour reproduction. Thereby, advanced plotters can provide a larger number of cartridges — 6 – 10, and s...ometimes more. Such devices are quite expensive and difficult to maintain, but they are indispensable for printing materials with high requirements of colour quality.

Cartridge model

Models of cartridges used in the plotter. With this info, you can easily find original consumables for the device.

Built-in memory

The amount of built-in memory provided in the design of the plotter.

Such memory is used to store various service data: print tasks, settings profiles, etc. Due to this, the plotter becomes more "independent": for example, many models allow you to continue printing even when the master PC is turned off.

We emphasize that in this case we are talking about solid-state flash memory, which is used mainly for "operational" service information. The capacity of such memory is relatively low, it is measured in megabytes; but in addition to it, the design may include a larger storage capacity — usually a traditional hard drive. For more information about it, see "Drive Capacity".

Noise level

The maximum noise level produced by the plotter during operation. The lower this indicator, the less inconvenience to others the device will create. At the same time, in modern plotters, the noise level usually does not exceed 60 dB, which is comparable to a TV set at an average volume; and many of them do not "reach" even up to 50 dB, corresponding to a quiet conversation at a distance of 2-3 m. And if we also take into account the fact that plotters are usually used in industrial premises, then we can say that in most cases this indicator does not play a significant role.
HP DesignJet T830 (F9A30A) often compared