USA
Catalog   /   Sports & Outdoor   /   Cycling & Accessories   /   Bikes

Comparison AZIMUT Scorpion 26 GD vs Formula Rodeo 2013

Add to comparison
AZIMUT Scorpion 26 GD
Formula Rodeo 2013
AZIMUT Scorpion 26 GDFormula Rodeo 2013
from $120.00 up to $132.00
Outdated Product
from $127.32
Outdated Product
TOP sellers
Model year2013
Type
mountain (MTB)
mountain (MTB)
Frame and suspension
Frame materialsteelsteel
Suspensionfull suspensionfull suspension
Suspension type (fork)spring-elastomerspring-elastomer
Fork travel50 mm
Fork materialsteel
Suspension type (rear suspension)spring-elastomerspring-elastomer
Wheels and brakes
Wheel size
26 " /2.3"/
26 "
Rim materialaluminiumaluminium
Rimdouble walldouble wall
Front brakemechanical disc
mechanical disc /rotor 160 mm/
Rear brakemechanical disc
mechanical disc /rotor 160 mm/
Handlebar and transmission
Speeds2121
Chainrings33
Freewheel cogs77
Bottom bracket modelTaiwan
Rear derailleurShimano Tourney TX35
Shifter typegrip shifttrigger
Shifter modelShimano Tourney RS35SP-N05
Chain modelKMC Z33
Handlebar typestraightstraight
General
Equipment
chain guard
kickstand
chain guard
kickstand
Weight18 kg
Color
Added to E-Catalogjune 2014april 2013

Model year

The year to which the manufacturer classifies the bicycle (more precisely, the model range that includes this model).

The significance of this parameter is that the model range is updated every year, and two bicycles with the same name, but from different years, can differ significantly in characteristics and equipment. At the same time, new models ( 2024, 2023) usually cost more, and older ones ( 2022, 2021, etc.) are sold at reduced prices.

It is worth considering that a later year of manufacture in itself does not necessarily mean more advanced characteristics - manufacturers can change them in the direction of simplification. So the model of previous years may be in no way inferior to the new bike.

Fork travel

Front fork travel on bicycles with damped suspension (see "Suspension"). Roughly speaking, the travel of a fork is the maximum distance that its size can be reduced by compression during shock absorption. The longer the fork travel, the better the shock absorption and “soft” ride it provides, but not all bikes require a lot of travel. Even within the same type (see “Purpose”), depending on the specific application and riding style, the optimal fork travel will be different — for example, freeride mountain bikes need good shock absorption, and for cross-country, on the contrary, a long fork travel will be redundant.

In general, if you do not plan on extreme cross-country riding or doing cycling tricks, this parameter is not critical. However, when choosing a bike for serious cycling, it is worth checking the recommended fork travel values (according to specialized literature or from professionals) and making sure that the desired model corresponds to them.

Fork material

— Aluminium. In this case, aluminium is the simplest and most unpretentious option. Its advantages include light weight; on the other hand, in the absence of shock absorption, the steering wheel with such a fork is highly susceptible to vibrations, and in terms of durability, aluminium is somewhat inferior to steel.

— Steel. Another relatively simple option, which at the same time is considered more advanced than the aluminium described above, and is found even in fairly expensive pro-level bikes. This is due to the fact that steel is noticeably stronger and more durable, as it is not as susceptible to "metal fatigue". However such forks weigh a little more than aluminium ones.

— Chromium molybdenum steel. A type of steel that is more advanced than more traditional grades. Among the main advantages of such alloys are high strength and reliability; at the same time, due to such properties, individual elements of the forks can be made thinner, and the forks themselves can be made lighter than ordinary steel ones. The main disadvantage of Cro-Mo steel is the rather high cost.

— Carbon. Lightweight and high-strength carbon fibre forks effectively dampen small bumps in the road under the wheels of the bike and slightly spring on small potholes, thereby providing cushioning on bumpy roads. The carbon fork facilitates the design of the front of the bike. Most often it is found on board "highways" and "gravel roads", less often it is installed in o...ff-road fatbikes. Vulnerable point — carbon forks break under the influence of strong point impacts.

Bottom bracket model

Model of the carriage installed on the bike as standard. The bottom bracket is the part that connects the system (front sprockets with pedals) and the frame; roughly speaking — an axle with bearings.

For details on the meaning of the model of a particular part, see "Cassette Model".

Rear derailleur

Model of the derailleur (derailer) installed on the rear wheel cassette as standard on the bike. For more information on why you need to know the model of a particular bicycle component, see paragraph "Cassette Model".

Shifter type

Type of shifters — devices that control gear shifting — installed on a bicycle. To date, the following types of shifters are used:

— Trigger. The design of this type is based on the use of 1 or 2 levers, as well as (sometimes) buttons located in close proximity to the hands of the cyclist. Trigger shifters can have different designs with varying degrees of convenience (usually, this is directly related to the price category of the device), located above or below the steering wheel, however, a number of common features are characteristic of all such models. Their main advantages are the traditional design and comfort when holding the steering wheel — the shifters are located outside the handles (grips) and do not affect convenience. In addition, they are quite simple in design and installation. On the other hand, this type also has a number of disadvantages. Thus, the presence of protruding parts increases the risk of equipment failure or injury to the cyclist in an accident. In many models, especially the low-cost level, in some cases, you have to take your hand off the steering wheel to change gear, which can lead to loss of control. In addition, shifting gears more than 2-3 "clicks" per press in trigger shifters is somewhat difficult and requires skill. However, in most cases, these disadvantages do not play a decisive role, and this type of levers is by far the most popular.

— Grip shift. By design, the grip shift is somewhat reminiscent of motorcyc...le gas regulators: part of the handle is made movable, and gear shifting is carried out by turning it in one direction or another. Since the grip shift rings are actually combined with handles (grips), you don’t need to remove your hand from the steering wheel to control the gears — just move it a little to the side, and you can switch speed (and in some cases you can even keep your hands on the rings all the time). Such systems are devoid of protruding parts, which increases reliability and safety. Another advantage over triggers is the ease of shifting gears to any number of speeds. The main disadvantage of this type is the increased risk of accidentally shifting gears on a difficult section of the track, when you have to hold on tightly to the grips (especially with large palms and short grips) — you can accidentally turn the shifter, which is fraught with a sharp shift, breaking the chain from the sprockets and loss of controllability. In addition, contact with water or dirt on the ring can lead to slippage of the hand when working with gears, and the rings themselves increase the dimensions of the steering wheel and for some may cause inconvenience in the grip.

— Dual control. An original system that combines the control of brakes and gears in one lever — the brake lever. In this case, braking is carried out by moving towards you, and gear shifting is carried out by shifting up or down. The advantages of such a system are the constancy of the grip of the steering wheel — 2 fingers are enough to control both the brakes and the gears. At the same time, dual control shifters are quite complex in design, as a result, they are expensive and poorly compatible with “non-native” brakes and switches. And the ergonomics of such systems is very ambiguous, ease of use largely depends on the individual tastes of the cyclist. Therefore, this type of shifters is rather uncommon.

Electronic. The competitive advantages of electronic shifters include the absence of a cable and levers to transfer physical force to the switch. In fact, these are ordinary buttons that send signals to the gearshift control unit. Such shifters work in conjunction with electronic switches that are installed on board advanced bicycle models. They can be placed in any convenient place with quick and comfortable access to the switches.

Shifter model

The model of the shifters (see “Shifter type”) that are fitted to the bike as standard. For more information on why you need to know the model of a particular bicycle component, see paragraph "Cassette Model".

Chain model

Model of the chain supplied as standard with the bike. For details on the value of the Model parameter for any part, see Cassette Model
AZIMUT Scorpion 26 GD often compared