Max weight
The maximum load allowed for a bicycle is, in other words, the maximum weight that it can normally carry in normal use. Of course, when calculating the load, the weight of both the cyclist himself and the additional load that he carries with him is taken into account.
The permissible load must definitely not be exceeded: even if the bike does not break down immediately, off-design loads can weaken the structure, and an accident can occur at any time. Also note that it is desirable to have a certain weight margin — at least 15 – 20 kg: this can be useful in case of transporting heavy loads and will give an additional guarantee in emergency situations (for example, when a wheel gets into a pit). Considering that the average weight of an adult is about 70 – 80 kg, bicycles with a permissible load
of up to 100 kg can be classified as "lightweights",
from 100 to 120 kg — to the middle category,
more than 120 kg — to "heavy trucks".
Fork material
— Aluminium. In this case, aluminium is the simplest and most unpretentious option. Its advantages include light weight; on the other hand, in the absence of shock absorption, the steering wheel with such a fork is highly susceptible to vibrations, and in terms of durability, aluminium is somewhat inferior to steel.
— Steel. Another relatively simple option, which at the same time is considered more advanced than the aluminium described above, and is found even in fairly expensive pro-level bikes. This is due to the fact that steel is noticeably stronger and more durable, as it is not as susceptible to "metal fatigue". However such forks weigh a little more than aluminium ones.
— Chromium molybdenum steel. A type of steel that is more advanced than more traditional grades. Among the main advantages of such alloys are high strength and reliability; at the same time, due to such properties, individual elements of the forks can be made thinner, and the forks themselves can be made lighter than ordinary steel ones. The main disadvantage of Cro-Mo steel is the rather high cost.
— Carbon. Lightweight and high-strength carbon fibre forks effectively dampen small bumps in the road under the wheels of the bike and slightly spring on small potholes, thereby providing cushioning on bumpy roads. The carbon fork facilitates the design of the front of the bike. Most often it is found on board "highways" and "gravel roads", less often it is installed in o
...ff-road fatbikes. Vulnerable point — carbon forks break under the influence of strong point impacts.Tyre
Tyre model supplied with the bike as standard. Different tyres have different purposes and characteristics; knowing the tyre model, you can clarify these points and check how they correspond to your wishes. This is especially important when choosing a machine for serious cycling.
Rim
Varieties of rims are determined by the number of horizontal jumpers in the design.
— Single. The simplest type of rim, similar in cross section to the Latin letter U. It is used mainly in entry-level bicycles.
— Double. Such a rim differs from a single rim by the presence of an additional horizontal bridge. Figuratively speaking, it resembles the same letter U, but with a double bottom. The features of this design are such that it is able to provide increased strength even with less weight than a single one. On the other hand, double rims are more difficult to manufacture and therefore more expensive. They are used primarily in bicycles where high resistance to stress is required — in particular, mountain varieties (see "Intended use") for freeride and cross-country.
— Triple. A further development of the idea of a double rim is a design with two additional horizontal bridges. This provides even greater strength, however, the weight increases quite noticeably. In addition, initially the second jumper was provided to strengthen the side surface, in order to avoid damage during the operation of rim brakes (see "Front brake", "Rear brake"); however, today most powerful brakes are
disc brakes, and this problem is losing its relevance. Because triple rims are quite rare.
Front hub model
The model of the hub used in the front wheel of a bicycle.
The hub is the central part in the wheel through which the axis of rotation passes. Features of the behavior of a bicycle depend on its characteristics, in particular, “rolling” (the ability to move by inertia, without pedaling). Knowing the model of the front hub, you can clarify its characteristics according to the manufacturer's documentation, find reviews from other users, etc., in order to determine how this model suits you.
Rear hub model
Model of the hub used in the rear wheel of a bicycle. See Front Hub Model for details.
Freewheel/cassette model
Model of a cassette — a system of rear wheel gears — mounted on a bicycle. Cassettes of different models differ in characteristics and can belong to different classes — from entry-level to professional. Knowing the cassette model, you can get acquainted with its features in more detail (according to official documentation, reviews, user reviews, etc.). This is especially important when choosing a bike for professional cycling.
Bottom bracket model
Model of the carriage installed on the bike as standard. The bottom bracket is the part that connects the system (front sprockets with pedals) and the frame; roughly speaking — an axle with bearings.
For details on the meaning of the model of a particular part, see "Cassette Model".
Front derailleur
Model of the derailleur (derailer) installed on the carriage with pedals as standard on the bike. For more information on why you need to know the model of a particular bicycle component, see paragraph "Cassette Model".