USA
Catalog   /   Sound & Hi-Fi   /   Portable Audio   /   Headphone Amplifiers

Comparison FiiO JA11 vs FiiO KA11 TC

Add to comparison
FiiO JA11
FiiO KA11 TC
FiiO JA11FiiO KA11 TC
Expecting restockExpecting restock
TOP sellers
Control via proprietary smartphone app.
This modification connects to the USB C input.
There is also a version with Lightning: FiiO KA11 LT
Typeportableportable
DACCS43131
Number of channels1 шт1 шт
Specs
DAC sample rate384 kHz384 kHz
DAC bit depth32 bit32 bit
Headphone impedance16 – 300 Ohm
Power (300 Ohm)44 mW
Power (32 Ohm)60 mW400 mW
Power (16 ohm)490 mW
Frequency range20 – 20000 Hz20 – 20000 Hz
Signal to noise ratio115 dB125 dB
Coef. harmonic distortion0.004 %0.0006 %
Functions and features
IPhone/iPad connection
Connectors
Inputs
USB C
USB C
Headphone outputs
1x mini-Jack (3.5 mm) шт
1x mini-Jack (3.5 mm) шт
Power source
Power type
USB powered
USB powered
General
Metal body
Dimensions90x11x8 mm44x10x10 mm
Weight5 g8 g
Added to E-Catalogfebruary 2025december 2024
Price comparison
Glossary

DAC

DAC model — a digital-to-analogue converter installed in the amplifier.

In accordance with the name, the DAC is responsible for converting a digital signal (for example, coming to the optical input or USB, see "Inputs") into an analogue format, with which the amplifier directly works. The presence of such a converter in an external "amplifier" is important, given the fact that many popular signal sources — such as smartphones or built-in sound cards — are equipped with fairly simple and inexpensive DACs with low sound quality; on external equipment, this quality can be much higher. And the quality of the conversion and, accordingly, the characteristics of the output sound directly depend on the characteristics of the DAC: even the most advanced power amplifier will not “save” a signal converted with significant errors. Accordingly, knowing the converter model, you can find detailed data on it — from official specifications to practical reviews — and evaluate how an amplifier with such a module meets your requirements.

Headphone impedance

The nominal impedance (impedance) of the headphones for which the amplifier was originally designed.

Modern headphones can have different impedance. In particular, among the most popular options are 16 ohms and 32 ohms, and advanced models have values from 300 ohms and even from 600 ohms. High-resistance is considered to be "ears" with a resistance of 100 ohms. These characteristics improve the purity of the sound, but require increased signal strength — and built-in amplifiers in handheld devices, computer audio cards, etc. usually have difficulty with this. Therefore, external amplifiers are often used for this very purpose — to effectively "shake" high-end headphones with high impedance. For the same reason, some of these amplifiers are not compatible with low-impedance “ears”: there are many devices that require headphones with an impedance of at least 32 ohms, or even higher, and in some models the lower limit of the operating range can reach 100 ohms. As for the maximum resistance, the range of its values is very impressive — from 32 ohms in relatively simple portable "amps" to thousands and even tens of thousands of ohms in high-end stationary models.

Anyway, you should not violate the manufacturer's recommendations for headphone impedance. If the resistance of the “ears” is too low, at best, the sound will be s...ubject to noticeable distortion, at worst, equipment failure and even fire may occur. Too high resistance, in turn, not only reduces the volume, but also worsens the frequency response.

Power (300 Ohm)

Rated power delivered by the amplifier when connected to headphones (or other load) with an impedance of 300 ohms.

By itself, the rated power is the highest average power that the device is capable of delivering for a long time without overloading; individual "jumps" of the signal may have a higher level, but in general, the capabilities of the amplifier are determined primarily by this indicator. At the same time, the physical features of the audio equipment are such that the actual power delivered to the load will depend on the resistance of this load. Therefore, in the characteristics of headphone amplifiers, data is often given for different impedance values. Specifically, a resistance of 300 ohms indicates the professional level of the “ears”, but this is far from the maximum indicator for such devices.

As for the choice for specific power values, it depends on the sensitivity of the headphones used, as well as on the sound pressure level (in other words, loudness) that is planned to be achieved by the amplifier. There are special formulas and tables that allow you to calculate the minimum required power for a certain volume at a given sensitivity of the "ears". For example, the minimum for normal listening to music in silence is considered to be a sound pressure of at least 95 dB, and for the most complete experience — at least 105 dB; with a headphone sensitivity of 100 dB, these volume levels will require at least 0.32 mW and 3.16 mW, respectively.

Power (32 Ohm)

Rated power delivered by the amplifier when connected to headphones (or other load) with an impedance of 32 ohms.

By itself, the rated power is the highest average power that the device is capable of delivering for a long time without overloading; individual "jumps" of the signal may have a higher level, but in general, the capabilities of the amplifier are determined primarily by this indicator. At the same time, the physical features of the audio equipment are such that the actual power delivered to the load will depend on the resistance of this load. Therefore, in the characteristics of headphone amplifiers, data is often given for different impedance values. A resistance of 32 ohms allows you to achieve quite good sound quality by the standards of low-impedance headphones, while it is not so high as to create problems for the built-in amplifiers of smartphones and other compact equipment. Therefore, most wired general-purpose (non-professional) headphones are made precisely in this resistance, and if the amplifier characteristics generally indicate power for a certain impedance, then most often it is for 32 ohms.

In the most modest modern amplifiers, the output power at this impedance is between 10 and 250 mW ; values of 250 – 500 mW can be called average, 500 – 100 mW are above average, and the most powerful models are capable of delivering ...f="/list/788/pr-19429 /">more than 1000 watts. The choice for specific power indicators depends on the sensitivity of the headphones used, as well as on the sound pressure level (in other words, loudness), which is planned to be achieved by the amplifier. There are special formulas and tables that allow you to calculate the minimum required power for a certain volume at a given sensitivity of the "ears". However, in the case of 32-ohm headphones, it does not always make sense to "get into the calculations." For example, the mentioned 10 mW is more than enough to drive headphones with a modest sensitivity of 96 dB to a volume of more than 105 dB — this is already enough to listen to music at quite a decent volume. And in order to achieve the same "ears" level of 120 dB, which provides a full perception of the loudest sounds (like explosions, thunder, etc.), you need to give out a power slightly higher than 251 mW. So in fact, you have to pay attention to this characteristic and resort to calculations / tables mainly in those cases when you have to use 32 Ohm headphones with a relatively low sensitivity — 95 dB or less.

Power (16 ohm)

Rated power delivered by the amplifier when connected to headphones (or other load) with an impedance of 16 ohms.

By itself, the rated power is the highest average power that the device is capable of delivering for a long time without overloading; individual "jumps" of the signal may have a higher level, but in general, the capabilities of the amplifier are determined primarily by this indicator. At the same time, the physical features of the audio equipment are such that the actual power delivered to the load will depend on the resistance of this load. Therefore, in the characteristics of headphone amplifiers, data is often given for different impedance values. And 16 ohms is a rather low resistance indicator even for low-resistance "ears"; such characteristics are provided mainly in general-purpose headphones designed for pocket gadgets with low-power amplifiers.

As for the choice for specific power values, it depends on the sensitivity of the headphones used, as well as on the sound pressure level (in other words, loudness) that is planned to be achieved by the amplifier. There are special formulas and tables that allow you to calculate the minimum required power for a certain volume at a given sensitivity of the "ears". At the same time, it is worth noting that at 16 ohms, even the most low-power modern “amps” are capable of delivering about 20 mW — this is enough to drive headphones with a sensitivity of 88 dB (far from the highest figure) to a vo...lume of 105 dB (the minimum value recommended for a complete listening experience). And in most amplifiers, when operated with a given impedance, they provide much more power. So paying attention to this point and going into the calculations makes sense mainly either with low sensitivity of the "ears" (less than the mentioned 88 dB), or if you want to end up with a level above 105 dB.

Signal to noise ratio

The ratio between the overall level of the desired signal produced by the amplifier and the level of background noise resulting from the operation of electronic components.

It is impossible to completely avoid background noise, but it is possible to reduce it to the lowest possible level. The higher the signal-to-noise ratio, the clearer the sound produced by the device, the less noticeable its own interference from the amplifier. In the most modest amplifiers from this point of view, this indicator ranges from 70 to 95 dB — not an outstanding, but quite acceptable value even for Hi-Fi equipment. You can often find higher numbers — 95 – 100 dB, 100 – 110 dB and even more than 110 dB. This characteristic is of particular importance when the amplifier operates as a component of a multi-component audio system (for example, "vinyl player — phono stage — preamplifier — headphone amplifier." The fact is that in such systems the final noise of all components at the output is summed up, and for sound purity it is extremely it is desirable that these noises be minimal

Separately, it is worth emphasizing that a high signal-to-noise ratio in itself does not guarantee high sound quality in general.

Coef. harmonic distortion

The coefficient of harmonic distortion that occurs during the operation of the amplifier.

Any electronic circuits are inevitably subject to such distortions, and the quality and reliability of the sound at the output depends on their level. Accordingly, ideally, the harmonic coefficient should be as low as possible. So, as a general rule, a level of 0.09% and below (hundredths of a percent) is considered good, and a level of less than 0.01% (thousandths of a percent) is excellent. The exception is lamp devices: higher values \u200b\u200bare allowed in them (in tenths of a percent), however, this point in many cases is not a drawback, but a feature (for more details, see "Lamp").

It is also worth noting that a low harmonic coefficient is especially important when using the amplifier as part of multicomponent audio systems — for example, when listening to music from a vinyl player with an external phono stage. The fact is that in such systems the sum of distortions from all components affects the final sound — and it, again, should be as low as possible.
FiiO JA11 often compared