USA
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison Gigabyte AORUS WATERFORCE II 360 vs Gigabyte AORUS WATERFORCE X II 360

Add to comparison
Gigabyte AORUS WATERFORCE II 360
Gigabyte AORUS WATERFORCE X II 360
Gigabyte AORUS WATERFORCE II 360Gigabyte AORUS WATERFORCE X II 360
Compare prices 1Compare prices 1
TOP sellers
Main specs
Featuresfor CPUfor CPU
Product typeliquid coolingliquid cooling
Fan
Number of fans33
Fan size120 mm120 mm
Fan thickness25 mm25 mm
Bearinghydrodynamichydrodynamic
Min. RPM800 rpm800 rpm
Max. RPM2300 rpm2400 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow64.95 CFM72 CFM
Static pressure2.93 mm H2O3.15 mm H2O
replaceable
Noise level37 dB38 dB
Power source4-pin4-pin
Radiator
Heatsink materialaluminiumaluminium
Plate materialcoppercopper
Socket
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
AMD AM4
AMD AM5
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
Liquid cooling system
Heatsink size360 mm360 mm
Pump size73x73x65 mm88x88x78 mm
Pump rotation speed3400 rpm3000 rpm
General
Display
Lighting
Lighting colourARGBARGB
Lighting syncGigabyte RGB FusionGigabyte RGB Fusion
Mount typebilateral (backplate)bilateral (backplate)
Manufacturer's warranty5 years6 years
Dimensions394x119x27 mm394x119x27 mm
Added to E-Catalogmarch 2024february 2024
Glossary

Max. RPM

The highest speed at which the cooling system fan is capable of operating; for models without a speed controller (see below), this item indicates the nominal rotation speed. In the "slowest" modern fans, the maximum speed does not exceed 1000 rpm, in the "fastest" it can be up to 2500 rpm and even more.

Note that this parameter is closely related to the fan diameter (see above): the smaller the diameter, the higher the speed must be to achieve the desired airflow values. In this case, the rotation speed directly affects the level of noise and vibration. Therefore, it is believed that the required volume of air is best provided by large and relatively "slow" fans; and it makes sense to use "fast" small models where compactness is crucial. If we compare the speed of models of the same size, then higher speeds have a positive effect on performance, but increase not only the noise level, but also the price and power consumption.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

Noise level

The standard noise level generated by the cooling system during operation. Usually, this paragraph indicates the maximum noise during normal operation, without overloads and other "extreme".

Note that the noise level is indicated in decibels, and this is a non-linear value. So it is easiest to evaluate the actual loudness using comparative tables. Here is a table for values found in modern cooling systems:

20 dB — barely audible sound (quiet whisper of a person at a distance of about 1 m, sound background in an open field outside the city in calm weather);
25 dB — very quiet (normal whisper at a distance of 1 m);
30 dB — quiet (wall clock). It is this noise that, according to sanitary standards, is the maximum allowable for constant sound sources at night (from 23.00 to 07.00). This means that if the computer is planned to sit at night, it is desirable that the volume of the cooling system does not exceed this value.
35 dB — conversation in an undertone, sound background in a quiet library;
40 dB — conversation, relatively quiet, but already in full voice. The maximum permissible noise level for residential premises in the daytime, from 7.00 to 23.00, according to sanitary standards. However, even the noisiest cooling systems usually do not reach this indicator, the maximum for such equipment is about 38 – 39 dB.

Socket

 

Pump size

The dimensions of the pump that the water cooling system is equipped with.

Most often, this parameter is indicated for all three dimensions: length, width and thickness (height). These dimensions determine two points: the space required to install the pump, and the diameter of its working part. With the first, everything is quite obvious; we only note that in some systems the pump simultaneously plays the role of a water block and is installed directly on the cooled component of the system, and it is there that there should be enough space. The diameter approximately corresponds to the length and width of the pump (or the smaller of these dimensions if they are not the same — for example, 55 mm in the model 60x55x43 mm). Some operating features depend on this parameter. So, the large diameter of the pump allows you to achieve the required performance at a relatively low rotation speed; the latter, in turn, reduces the noise level and increases the overall reliability of the structure. On the other hand, a large pump costs more and takes up more space.

Pump rotation speed

The speed at which the working part of the pump rotates, which is nominally provided in the water cooling system.

High speed, on the one hand, has a positive effect on performance, on the other hand, it increases the noise level and reduces the time between failures. Therefore, with the same performance, relatively “slow” pumps are considered more advanced, in which the necessary pumping volumes are achieved due to the large diameter of the working part, and not due to speed.

Display

Remote or built -in information display in the design of the cooling system. The screen is used to display information about temperature, fan speed, voltage, etc. In advanced implementations, the display can be used to control cooling parameters to ensure optimal system performance and stability.

Manufacturer's warranty

Manufacturer's warranty provided for this model.

In fact, this is the minimum service life promised by the manufacturer, provided that the operating rules are followed. Most often, the actual service life of the device turns out to be significantly longer than the guaranteed one. Among the modest indicators there are models with a 1-year or 2-year warranty, more serious models already have a 3-year warranty, and the most confident manufacturers give a 5-year or even 6-year warranty.
Gigabyte AORUS WATERFORCE X II 360 often compared