USA
Catalog   /   Photo   /   Digital Cameras

Comparison Fujifilm X-T30 II kit 15-45 vs Fujifilm X-S20 kit 15-45

Add to comparison
Fujifilm X-T30 II  kit 15-45
Fujifilm X-S20  kit 15-45
Fujifilm X-T30 II kit 15-45Fujifilm X-S20 kit 15-45
Compare prices 2Compare prices 17
TOP sellers
4K shooting with a maximum bitrate of 200 Mbit/s.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
Sensor
SensorCMOS BSICMOS BSI
Sensor sizeAPS-C (23x15.5 mm)APS-C (23x15.5 mm)
Effective MP number2626
Maximum image size6240x4160 px6230x4160 px
Light sensitivity (ISO)80 - 5120080-51200
RAW format recording
No AA filter
Lens
Mount (bayonet)Fujifilm XFujifilm X
Kit lens
Aperturef/3.5 - 5.6f/3.5 - f/5.6
Focal length15 - 45 mm15 - 45 mm
Optical zoom33
Manual focus
Image stabilizationis absentwith matrix shift
Photo shooting
HDR
2 control dials
White balance measuring
Exposure compensation± 5 EV, in 1/3 EV steps± 5 EV, in 1/3 EV steps
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 240 fps1920x1080 px 240 fps
Ultra HD (4K)4096x2160 px 30 fps4096x2160 px 60 fps
Above 4K6240x4160 px 30 fps
File recording formatsMPEG-4MPEG-4, H.264, H.265
Manual video focus
Maximum video length
time limit
 
Connection ports
HDMI v 1.4
headphone Jack
HDMI v 1.4
microphone Jack
Focus
Autofocus modes
one shot
AI focus
tracking
in face
one shot
AI focus
tracking
in face
by smile
Focus points425 шт425 шт
Touch focus
Front / back adjustment
Contour enhancement
Viewfinder and shutter
Viewfinderelectronicelectronic
Viewfinder crop0.93 x0.93 x
Frame coverage100 %100 %
Shutter speed900 - 1/4000 с30 - 1/4000 с
Continuous shooting30 fps20 fps
Shutter typeelectronic/mechanicalelectronic/mechanical
Screen
Screen size3 ''3 ''
Screen resolution1620 thousand pixels1040 thousand pixels
Touch screen
Rotary display
Memory and communications
Memory cards typesSD, SDHC, SDXCSD, SDHC, SDXC
Communications
Wi-Fi
Bluetooth v 4.2
smartphone control
Wi-Fi 4 (802.11n)
Bluetooth
smartphone control
Flash
Built-in flash
Guide number5
Application range7 m
External flash connect
Power source
Power source
battery
battery
Battery modelNP-W126s
Shots per charge390 шт750 шт
General
Charger modelBC-W126
Materialmagnesium alloysteel
Retrodesign
Dimensions (WxHxD)118х83х47 mm127x85x65 mm
Weight378 g491 g
Color
Added to E-Catalogoctober 2023july 2023
Glossary

Maximum image size

The maximum size of photos taken by the camera in normal (non-panoramic) mode. In fact, this paragraph indicates the highest resolution of photography — in pixels vertically and horizontally, for example, 3000x4000. This indicator directly depends on the resolution of the matrix: the number of dots in the image cannot exceed the effective number of megapixels (see above). For example, for the same 3000x4000, the matrix must have an effective resolution of at least 3000*4000 = 12 million dots, that is, 12 MP.

Theoretically, the larger the size of the photo, the more detailed the image, the more small details can be conveyed on it. At the same time, the overall image quality (including the visibility of fine details) depends not only on resolution, but also on a number of other technical and software factors; see "Effective MP number" for more details.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

No AA filter

No AA filter in camera design.

The AA filter is responsible for "anti-aliasing" — the elimination of the moiré effect. This effect can occur when shooting objects with a lot of thin horizontal or near-horizontal lines (for example, a brick wall at a great distance, or a suit made of a certain type of fabric). It leads to the appearance of a characteristic pattern in the picture, which, usually, is inappropriate; to eliminate this phenomenon, an AA filter is provided. At the same time, this feature is said to reduce the overall sharpness of the image; therefore, it may not be available in some cameras. These are mainly professional models: the absence of an AA filter gives the photographer additional features, but puts forward increased requirements for shooting skills.

Aperture

Aperture of the lens installed in the camera or supplied with it in the kit (for models with detachable optics).

In a simplified way, this parameter can be described as the ability of the lens to transmit light - in other words, how much the light flux weakens when passing through the optics. It is believed that two main indicators affect the characteristics of light transmission: the size of the relative opening of the lens and its focal length. Aperture is the ratio of the first indicator to the second; in this case, the size of the active hole is taken as one and is generally omitted when recording, as a result, such a recording looks, for example, like this: f / 2.0. Accordingly, the larger the number after the fraction sign, the lower the aperture ratio, the less light the lens transmits.

Zoom lenses (zoom lenses), as a rule, have different aperture values for different focal lengths. For such optics, two values of this parameter are indicated in the characteristics, for the minimum and maximum focal lengths, for example, f / 2.8–4.5. There are also vario lenses that maintain a constant aperture over the entire range of focal lengths, but they are much more expensive than analogs with variable aperture.

The high light transmission of the lens is important if the camera is planned to be used for shooting in low light conditions or for shooting fast moving objects: high-aperture optics allow you to shoot at low sensor sensitivity (which...reduces the likelihood of noise) and at low shutter speeds (at which moving objects are less blurry) . This parameter also determines the depth of field of the imaged space: the higher the aperture ratio, the smaller the depth of field. Therefore, for shooting with artistic background blur (“bokeh”), it is recommended to use fast lenses.

Image stabilization

An image stabilization method provided by a camera. Note that optical and sensor-shift systems are sometimes combined under the term "true" stabilization, due to their effectiveness. See below for more details.

Stabilization itself (regardless of the operating principle) allows you to compensate for the "shake" effect when the camera is not positioned correctly - especially when shooting handheld. This is especially important when shooting with significant magnification or at long shutter speeds. However, in any case, this function reduces the risk of ruining the frame, so cameras with stabilization are extremely common. The operating principles can be as follows:

— Electronic. Stabilization is carried out by means of a kind of “reserve” — a section along the edges of the sensor, which is not initially involved in the formation of the final image. However, if the camera electronics detect vibrations, it compensates for them by selecting the necessary fragments of the image from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their operation, it is necessary to allocate a fairly significant part of the sensor — and reducing the useful area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is enabled only at lower resolutions and is not available at full...frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable optics.

— Optical. Stabilization is achieved when light passes through the lens — due to a system of moving lenses and gyroscopes. As a result, the image gets to the sensor already stabilized, and the entire area of the sensor can be used for it. Therefore, optical systems, despite their complexity and rather high cost, are considered more preferable for high-quality shooting than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera type") the presence of this function depends on the installed lens; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the kit lens is equipped with a stabilizer).

— With sensor shift. Stabilization performed by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, sensor shift systems have serious advantages — first of all, such stabilization will work regardless of the characteristics of the lens. For cameras with non-replaceable optics, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, sensor shift allows even "non-stabilized" lenses to be used with convenience, and when "stabilized" optics are installed, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the above options: initially, it operates on an optical principle, and when the lens's capabilities are not enough, an electronic system is connected. This allows for an increase in overall efficiency in comparison with purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are comparatively complex and expensive, and not the entire sensor is used. Therefore, such a combination is rare, mainly in individual advanced digital compacts.

— With sensor shift and electronic. Another type of combined stabilization systems. Like "optical + electronic", it improves the overall efficiency of stabilization, but at the same time combines the disadvantages of both methods (they are also similar: more complicated and more expensive camera plus a decrease in the useful area of the sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.

HDR

Camera support for HDR.

HDR stands for High Dynamic Range. The main application of this technology is shooting scenes with significant differences in illumination, when there are both very bright and very dark areas in the frame. The features of modern digital photography are such that in the normal shooting mode, only a rather narrow range of brightness can be correctly processed; as a result, with a large difference in illumination, the image contains either too dark or overexposed fragments. HDR avoids this phenomenon: in this mode, the camera takes several shots with different exposure settings, and then glues them together in such a way as to reduce the brightness in bright places and increase in dark places. This allows you to shoot, for example, landscapes against the backdrop of a bright sunset sky, the interiors of dimly lit buildings with bright windows, etc. In addition, HDR can also be used as an artistic technique — to give the picture an unusual colour scheme.

Note that this effect can also be achieved using post-processing in a graphics editor; however, using the camera is much more convenient.

Ultra HD (4K)

The maximum resolution and frame rate of video captured by the camera in the Ultra HD (4K) standard.

UHD 4K refers to resolutions with a frame size of approximately 4,000 horizontal pixels. Specifically, in cameras for video shooting, resolutions of 3840x2160 and 4096x2160 are most often used. Regarding the frame rate, it is worth noting first of all that a normal (not slow-motion) video is shot at a speed of up to 60 fps, and in this case, the higher the frame rate, the smoother the video will be, the less jerks will be noticeable when moving in the frame. If the frame rate is 100 fps or higher, this usually means that the camera has a slow-motion video mode.

Above 4K

The maximum resolution and frame rate of video taken by the camera in a standard higher than 4K.

As of the end of 2020, the situation with shooting such video with cameras is as follows. Most often we are talking about working in 6K format, at a resolution of 5952x3988 or 7680x4320, and the frame rate does not exceed 30 fps, and in many models even 24 fps. Such a shooting speed by modern standards is very low, but it is technically difficult to achieve a higher frame rate — in this case, this would require a very powerful and unreasonably expensive hardware hardware. And even at this speed, cameras with 6K support are very expensive, so there are not many of them on the market. On the other hand, these resolutions provide an extremely high level of detail.

File recording formats

File formats in which the camera can record video. Given that the footage is designed to be viewed on an external screen, you should make sure that the playback device (DVD player, media centre, etc.) is able to work with the appropriate formats. At the same time, many camera models themselves can play the role of a player by connecting to a TV via an audio / video output or HDMI (see the corresponding paragraphs of the glossary). And if the video materials are to be viewed on a computer, you should not pay special attention to this parameter at all: problems with format incompatibility in such cases rarely occur, but are usually solved by installing the appropriate codec.
Fujifilm X-T30 II often compared
Fujifilm X-S20 often compared