USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison MSI PRO B650M-B vs Gigabyte B650M S2H

Add to comparison
MSI PRO B650M-B
Gigabyte B650M S2H
MSI PRO B650M-BGigabyte B650M S2H
from $140.98 
Expecting restock
from $145.94 
Expecting restock
TOP sellers
Featuresfor home/officefor home/office
SocketAMD AM5AMD AM5
Form factormicro-ATXmicro-ATX
Power phases9
Size (HxW)244x215 mm230x225 mm
Chipset
ChipsetAMD B650AMD B650
BIOSAmiAmi
UEFI BIOS
RAM
DDR52 slot(s)2 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency6800 MHz6400 MHz
Max. memory96 GB96 GB
XMP
EXPO support
Drive interface
SATA 3 (6Gbps)44
M.2 connector11
M.21xPCI-E 4x1xPCI-E 4x
Integrated RAID controller
Expansion slots
1x PCI-E slots11
PCI-E 16x slots11
PCI Express4.04.0
Internal connections
TPM connector
USB 2.022
USB 3.2 gen111
ARGB LED strip11
RGB LED strip11
More featuresClear CMOS jumper
Video outputs
D-Sub output (VGA)
HDMI output
HDMI versionv.2.1v.2.1
DisplayPort
DisplayPort versionv.1.4
Integrated audio
AudiochipRealtek ALC897Realtek
Sound (channels)7.17.1
Network interfaces
LAN (RJ-45)2.5 Gbps1 Gbps
LAN ports11
LAN controllerRealtek RTL8125BGRealtek
External connections
USB 2.024
USB 3.2 gen142
PS/221
BIOS FlashBack
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors33
CPU Fan 4-pin11
Chassis/Water Pump Fan 4-pin22
Added to E-Catalogfebruary 2024november 2023
Glossary

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

Size (HxW)

Motherboard dimensions in height and width. It is assumed that the traditional placement of motherboards is vertical, so in this case one of the dimensions is called not the length, but the height.

Motherboard sizes are largely determined by their form factors (see above), however, the size of a particular motherboard may differ slightly from the standard adopted for this form factor. In addition, it is usually easier to clarify the dimensions according to the characteristics of a particular motherboard than to look for or remember general information on the form factor. Therefore, size data can be given even for models that fully comply with the standard.

The third dimension — thickness — is considered less important for a number of reasons, so it is often omitted.

Max. clock frequency

The maximum RAM clock speed supported by the motherboard. The actual clock frequency of the installed RAM modules should not exceed this indicator — otherwise, malfunctions are possible, and the capabilities of the “RAM” cannot be used to the fullest.

For modern PCs, a RAM frequency of 1500 – 2000 MHz or less is considered very low, 2000 – 2500 MHz is modest, 2500 – 3000 MHz is average, 3000 – 3500 MHz is above average, and the most advanced boards can support frequencies of 3500 – 4000 MHz and even more than 4000 MHz.

XMP

The ability of the motherboard to work with RAM modules that support XMP (Extreme Memory Profiles) technology. This technology was developed by Intel; it is used in motherboards and RAM blocks and only works if both of these system components are XMP compliant. A similar technology from AMD is called AMP.

The main function of XMP is to facilitate system overclocking (“overclocking”): special overclocking profiles are “sewn” into the memory with this technology, and if desired, the user can only select one of these profiles without resorting to complex configuration procedures. This is not only easier, but also safer: every profile added to the bar is tested for stability.

DisplayPort

 

DisplayPort version

The version of the DisplayPort interface (see above) installed on the motherboard.

— v.1.2. The oldest version in use today (2010). It was in it that 3D support first appeared, the ability to work with the miniDisplayPort connector, as well as the option of connecting several screens in series to one port (daisy chain). The maximum resolution fully supported by v.1.2 is 5K at 30 fps, with some limitations, 8K video is also supported. And the v.1.2a update, introduced in 2013, added compatibility with the FreeSync technology used in AMD graphics cards.

— v.1.3. An update to the DisplayPort standard released in 2014. Thanks to the increase in bandwidth, it was possible to provide full support for 8K video (at 30 fps), and in 4K and 5K standards, increase the maximum frame rate to 120 and 60 fps, respectively. Another key update was the Dual-mode function, which provides compatibility with HDMI and DVI interfaces through the simplest passive adapters.

— v.1.4. The most recent version of the widely used. The bandwidth has been further increased (almost doubled compared to v.1.2, which allowed, albeit with some limitations, to transmit 4K and 5K video at up to 240 fps and 8K at up to 144 fps. In addition, Support for a number of special features has been added, including HDR10, and the maximum number of simultaneously transmitted audio channels has increased to 32.

Audiochip

The model of the audio chip (a module for processing and outputting sound) installed on the motherboard. Data on the exact name of the sound chip will be useful when looking for detailed information about it.

Modern "motherboards" can be equipped with fairly advanced audio modules, with high sound quality and extensive features, which makes them suitable even for gaming and multimedia PCs (although professional audio work will still most likely require a separate sound card). Here are the most popular modern audio chips: Realtek ALC887, Realtek ALC892, Realtek ALC1150, Realtek ALC1200, Realtek ALC1220, Realtek ALC4050, Realtek ALC4080, Supreme FX.

LAN (RJ-45)

The type of LAN interface provided in the design of the motherboard. LAN (also known as RJ-45 and Ethernet) — a standard connector for wired connection to computer networks; can be used for both local and Internet. The type of such a connector is indicated by the maximum speed. Note that nowadays, even inexpensive "motherboards" are usually equipped with fairly fast LAN adapters — at least gigabit ones. The meaning of such characteristics is not only (and often not so much) to speed up the transfer of large amounts of data, but also to reduce lags in the network connection. This can be important for tasks that require good responsiveness or precise synchronization, such as online games.

1 Gbps. The standard used in the vast majority of desktop (non-server) motherboards. On the one hand, it provides more than a decent connection speed, sufficient even for large amounts of information; on the other hand, it is inexpensive and can be installed even in the simplest low-cost motherboards.

2.5 Gbps. An improved version of the gigabit standard, it is also a simplified and somewhat cheaper version of the 5-gigabit standard. It is found in separate "motherboards" for gaming purposes.

5 Gbps. A kind of transitional option between a relatively simple gigabit LAN (see above) and an advanced 10-gigabit LAN (see below). Found in some gaming motherboards....This standard costs less than the 10-gigabit one, while the communication speed still turns out to be quite decent, and the lags are low.

10 Gbps. Such a data transfer rate is indispensable for large volumes of information; in addition, it provides a high speed of passing individual data blocks, which is important for reducing lags in online games. At the same time, this interface appeared relatively recently and is not cheap. Therefore, it is mainly used in top-end "motherboards" for gaming and server purposes (see "In the direction").

— 100 Mbps. A very popular standard in its time, which is now considered obsolete in light of the spread of faster versions of the LAN. It is extremely rare, mainly in separate low-cost boards.

LAN controller

Model of the LAN controller installed in the motherboard.

The LAN controller provides data exchange between the card and the network port(s) of the computer. Accordingly, both general characteristics and individual features of the network functionality of the "motherboard" depend on the characteristics of this module: support for special technologies, connection quality in case of unstable communication, etc. Knowing the model of the LAN controller, you can find detailed data on it — including including practical reviews; this information is rarely needed by the average user, but it can be useful for online game enthusiasts and for some specific tasks.

Thus, the LAN controller model is specified mainly in cases where it is a rather advanced solution that is noticeably superior to standard models. Such solutions are currently produced mainly under the brands Intel(middle level), Realtek(relatively simple models), Aquntia and Killer(mostly advanced solutions).
MSI PRO B650M-B often compared