USA
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison Xiaomi Fimi X8 SE 2022 V2 vs Hubsan Zino Mini Pro Portable 64GB

Add to comparison
Xiaomi Fimi X8 SE 2022 V2
Hubsan Zino Mini Pro Portable 64GB
Xiaomi Fimi X8 SE 2022 V2Hubsan Zino Mini Pro Portable 64GB
Compare prices 1
from $599.00 
Outdated Product
TOP sellers
Main
Maximum flight altitude is 800 m. Ascent speed is up to 5 m/s, descent speed is up to 4 m/s. The Combo version may include a megaphone and a device for transporting and dumping cargo, as well as additional equipment. battery and backpack.
4K camera with 3-axis mechanical gimbal. 3 obstacle sensors. The weight of the quadcopter is 249 g (no registration required). Hyperlapse shooting mode. Video transmission range: 10 km. In live broadcast mode, the video resolution is 1080p.
Flight specs
Maximum flight time35 min40 min
Horizontal speed65 km/h58 km/h
Ascent / descent speed
18 km/h /decrease – 14.4 km/h/
Camera
Camera typebuilt-inbuilt-in
Matrix size1/2"1/3"
Aperturef/1.6
Number of megapixels48 MP48 MP
Photo resolution8000x6000 px
Full HD filming (1080p)1920x1080 px 60 fps1920x1080 px 60 fps
Quad HD filming2720x1530 px 60 fps
Ultra HD (4K)
3840x2160 px 30 fps /up to 100 Mbit/s/
3840x2160 px 30 fps
Viewing angles79°84
Time lapse
Mechanical stabilizer suspension
 /3-axis/
Camera with control
Live video streaming
Memory card slot
 /up to 256 GB/
Flight modes and sensors
Flight modes
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
flight plan without GPS (Waypoints)
flyby GPS points
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
flight plan without GPS (Waypoints)
 
Sensors
GPS module
heights
optic
gyroscope
GPS module /+GLONASS/
heights
optic
gyroscope
Obstacle sensors
 
front
 
bottom
front
back
Control and transmitter
Controlremote control onlyremote control and smartphone
Range10000 m10000 m
Control frequency2.4 GHz2.4 GHz
Video transmission frequency2.4 GHz (Wi-Fi)
Smartphone mount
Information display
Remote control power source
battery /3900 mAh/
Motor and chassis
Motor typebrushless
Motor model1503
Number of screws4 pcs4 pcs
Screw diameter126 mm
Foldable design
Battery
Battery capacity4.5 Ah2.4 Ah
Voltage13 V8.4 V
Batteries in the set1 pcs1 pcs
General
Body backlight
Materialplasticplastic
Dimensions202x161x61.6 mm
Dimensions (folded)204x106x72.6 mm137x88x61.6 mm
Weight768 g249 g
Color
Added to E-Catalogmay 2023october 2021

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

Ascent / descent speed

The speed at which the quadcopter rises up in the air or descends to the ground. Recreational, photo and video models tend to have more moderate climb/descent speeds, while professional or racing drones can rise and fall much faster. This indicator can be used to evaluate how quickly the copter can rise to a height for filming or, if necessary, avoid obstacles, and a high descent rate will be useful if the drone needs to be returned to the ground quickly and safely.

Matrix size

The physical size of the photosensitive element of a camera. Measured diagonally, often indicated in fractions of an inch — for example, 1/3.2" or 1/2.3" (respectively, the second matrix will be larger than the first). Note that in such designations it is not the “ordinary” inch (2.54 cm) that is used, but the so-called "Vidiconovsky", which is less than a third and is about 17 mm. This is partly a tribute to the tradition that comes from television tubes — "vidicons" (the forerunners of modern matrices), partly — a marketing ploy that gives buyers the impression that the matrices are larger than they really are.

Anyway, for the same resolution (number of megapixels), a larger matrix means a larger size for each individual pixel; accordingly, on large matrices, more light enters each pixel, which means that such matrices have higher photosensitivity and lower noise levels, especially when shooting in low light conditions. On the other hand, increasing the diagonal of the sensor inevitably leads to an increase in its cost.

Aperture

Aperture - a characteristic that determines how much the camera lens attenuates the light flux passing through it. It depends on two main characteristics - the diameter of the active aperture of the lens and the focal length - and in the classical form is written as the ratio of the first to the second, while the diameter of the effective aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.

Photo resolution

The maximum resolution of photos that the standard quadcopter camera can take. This parameter is directly related to the resolution of the matrix (see above): usually, the maximum resolution of a photo corresponds to the full resolution of the matrix. For example, for pictures of 4000x3000 pixels, a sensor of 4000 * 3000=12 megapixels is provided.

Theoretically, a higher resolution of photography allows you to achieve highly detailed photographs, with good visibility of fine details. However, as in the case of the overall resolution of the matrix, high resolution does not guarantee the same overall quality, and you should focus not only on this parameter, but also on the price category of the quadcopter and its camera.

Also note that the high resolution of the camera affects the volume of the materials being shot, for their storage and transmission, more voluminous drives and “thick” communication channels are required.

Quad HD filming

The maximum resolution and frame rate supported by the aircraft camera (built-in or bundled) when shooting in Quad HD.

This standard is intermediate between Full HD (see above) and UltraHD 4K (see below); in cameras of modern drones, the Quad HD frame size can be from 2560 to 2720 pixels horizontally and from 1440 to 1530 pixels vertically. In some situations, such a video turns out to be the best option: it gives better detail than Full HD, while it does not require such powerful “hardware” and capacious drives as 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high. Speeds of more than 60 fps are mainly used for shooting slow-motion video, however, for a number of reasons, such a possibility is rarely provided for in the QuadHD standard: relatively simple devices would require too powerful and expensive hardware for this, and in advanced copters, where the cost of electronics not particularly important, manufacturers prefer to use slow motion at higher resolutions.

Viewing angles

The viewing angle provided by the standard quadcopter camera; for optics with adjustable zoom, usually, the maximum value is taken into account.

The viewing angle is the angle between the lines connecting the centre of the lens to the two opposite extreme points of the visible image. Usually measured along the diagonal of the frame, but there may be exceptions. As for the specific values of this parameter, in modern copters they can range from 55 – 60 ° to 180 ° and even more. At the same time, a wider angle (ceteris paribus) allows you to simultaneously fit more space into the frame; and a narrower one covers a smaller space, however, the objects that are in the frame look larger, it is easier to see individual small details on them. So when choosing by this parameter, you should consider what is more important for you: wide coverage or an additional zoom effect.

Memory card slot

The presence of a slot for memory cards in the design of the quadcopter.

Usually, this function is provided in models equipped with cameras (see “Camera type”), and the cards themselves are used primarily for recording captured photos and videos. However, in some models, other data can be stored on such media — GPS tracks, flight routes, flight programs, etc. Anyway, cards are convenient, first of all, by the ability to quickly transfer data between the device and other devices that have a card reader (in particular, laptops).

It is worth noting that different devices can be designed for different standards of memory cards, and the media themselves are usually not supplied in the kit. Therefore, before choosing a card, you should clarify according to official data which type will be optimal for your model.
Xiaomi Fimi X8 SE 2022 V2 often compared