USA
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   3D Printers

Comparison Creality Ender 3 Max Neo vs Creality Ender 3 Max

Add to comparison
Creality Ender 3 Max Neo
Creality Ender 3 Max
Creality Ender 3 Max NeoCreality Ender 3 Max
from $339.99 
Expecting restock
from $299.00 
Outdated Product
TOP sellers
Main
Silent stepper motor drivers TMC2208.
Silent stepper motor drivers TMC2208.
Print technologydeposition modeling (FDM/FFF)deposition modeling (FDM/FFF)
Filament materialABS, PLA, PETG, WoodABS, PLA, TPU, PETG, Wood
3D model file format.stl , .obj, .gcode.stl , .obj, .gcode
Compatible softwareCura, Simplify3D, Repetier-HostCura, Simplify3D, Repetier-Host
Object dimensions (HxWxD)320x300x300 mm340x300x300 mm
Object volume28.8 L30.6 L
Printing process
Min layer thickness100 µm100 µm
Print speed120 mm/s100 mm/s
Nozzle diameter0.4 mm0.4 mm
Min thread diameter1.75 mm1.75 mm
Heating bed temperature100 °C
Extruder (nozzle) temperature260 °C
Extruder typeBowdenBowden
Number of extruders11
More features
Features
heated bed
resume print
filament sensor
heated bed
resume print
filament sensor
Data transfer
card reader
PC connection (USB)
card reader
PC connection (USB)
General
Stepper Motor DriverTMC2208TMC2208
LCD display
4.3"
touch screen
3.5
 
Power350 W350 W
Dimensions52x58x59 cm51x56x59 cm
Weight10.3 kg9.5 kg
Added to E-Catalogjune 2023june 2023

Filament material

 

Object dimensions (HxWxD)

The maximum dimensions of a product that can be printed on a 3D printer in one cycle.

The larger the dimensions of the model, the wider the choice for the user, the greater the variety of sizes available for printing. On the other hand, "large-sized" printers take a lot of space, and this parameter significantly affects the cost of the device. In addition, while printing a large model with FDM/FFF (see "Printing Technology"), larger nozzles and higher print speeds are desirable — and these features negatively affect detailing and the print quality of tiny objects. Therefore, while choosing, you should not aim the utmost maximum sizes — you should realistically assess the dimensions of the objects that you're going to print, and proceed from these data (plus a small margin in case of unexpected moments). In addition, we note that a large product can be printed in parts, and then piece these parts together.

As for the specific values of each size, all three main dimensions have the same division into nominal categories (small size, medium, above average and large): — height — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — width — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — depth — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm.

Object volume

The largest volume of an object that can be printed on a printer. This indicator directly depends on the maximum dimensions (see above) — usually, it corresponds to these dimensions multiplied by each other. For example, dimensions of 230x240x270 mm will correspond to a volume of 23*24*27 = 14,904 cm³, that is, 14.9 litres.

The exact meaning of this indicator depends on the printing technology used (see above). These data are fundamental for photopolymer technologies SLA and DLP, as well as for powder SHS: the volume of the model corresponds to the amount of photopolymer/powder that needs to be loaded into the printer to print the product to the maximum height. If the size is smaller, this amount may decrease proportionally (for example, printing a model at half the maximum height will require half the volume), however, some printers require a full load regardless of the size of the product. In turn, for FDM/FFF and other similar technologies, the volume of the model is more of a reference value: the actual material consumption there will depend on the configuration of the printed product.

As for specific figures, the volume up to 5 litres can be considered as small, from 5 to 10 litres — medium, more than 10 litres — large.

Print speed

The print speed provided by an FDM/FFF type 3D printer (see "Print Technology").

The print speed in this case is the maximum amount of material that can pass through a regular nozzle per second. The higher this value (150 mm/s, 180 mm/s , 200 mm/s and above), the faster the printer is able to cope with a particular task. Of course, the actual production time will depend on the configuration of the printing model and the print settings, but other things being equal, a printer with a higher speed will operate faster. On the other hand, an increase in speed requires an increase in heating power (because the extruder has time to melt the required volume of material), blowing power (otherwise the plastic will not have time to solidify normally), as well as stricter control of the movement of the extruder (to compensate for inertia from fast movements). So, generally, this spec strongly depends on the price category and specialization of the device, and it’s worth looking specifically for a “fast” model in cases where the speed of production is critical. Otherwise, a 100 mm/s model or 120 mm/s is sufficient, or even less.

Heating bed temperature

Maximum heating temperature in 3D printers with heated bed (for more details, see the relevant paragraph). The higher the limit, the more varieties of plastic can be used for printing. So, models with heating up to 100 °C are suitable for 3D printing with PLA plastic, with a bed temperature of 100 to 120 °C — for working with ABS plastic and nylon, high-temperature ones — allow the use of polycarbonate and refractory varieties of plastic.

Extruder (nozzle) temperature

The heating temperature provided by the extruder in an FDM/FFF or PJP printer (see Printing Technology) .

Compatibility with this or that printed material directly depends on this parameter. For example, for PLA plastic, temperature range 180 – 230 °C is required, for ABS it will require 220 – 250 °C, and for polycarbonate — at least 270 °C. The temperature definitely should not be too low — otherwise the material simply cannot melt normally. But the margin in most cases is quite acceptable — for example, many PLA-compatible models operate at temperatures of about 250 °C, or even 280 °C.

Thus, a higher operating temperature enhances the printer's capabilities and its compatibility with various types of thermoplastics. On the other hand, the more the material is heated, the worse it cools down; to ensure sufficient solidification efficiency, one must either reduce the printing speed (which increases the time required) or increase the blowing intensity (which affects the cost). Well, anyway, while choosing, you should focus primarily on filaments, which compatibility is directly indicated in the specs.

LCD display

The printer has its own screen. The specific functionality of such a screen can be different - from the simplest indicator for several characters and service symbols to a full-fledged color matrix capable of displaying inscriptions, drawings, etc.; These nuances should be clarified separately. However, in any case, this feature provides additional ease of management: various service information can be displayed on the screen to help the user set up printing parameters and control the process.
We would like to emphasize that touch displays are not included in this category; they are indicated as a separate function. But the screen size directly affects the comfort when working with the device.

There are also models with a touch screen, similar to those used in smartphones and tablets. Such a display is a full-fledged control tool, and it is more convenient and functional than more traditional options such as keypads: you can display a wide variety of control elements (buttons, sliders, lists, etc.) on the screen, selecting the optimal set of these elements for your needs. specific situation. In addition, the screen itself usually has a color matrix with a fairly high resolution, which makes it possible to display a wide variety of service data - even drawings and diagrams. Thanks to all this, most printer control functions can be performed through such a display; some models with such equipment are able to work even without connecting to a computer. The disad...vantages of touch displays include their higher cost than conventional ones, despite the fact that control via a computer is usually still more practical and visual. So this function is relatively rare these days.
Creality Ender 3 Max Neo often compared