DAC
DAC model — a digital-to-analogue converter installed in the amplifier.
In accordance with the name, the DAC is responsible for converting a digital signal (for example, coming to the optical input or USB, see "Inputs") into an analogue format, with which the amplifier directly works. The presence of such a converter in an external "amplifier" is important, given the fact that many popular signal sources — such as smartphones or built-in sound cards — are equipped with fairly simple and inexpensive DACs with low sound quality; on external equipment, this quality can be much higher. And the quality of the conversion and, accordingly, the characteristics of the output sound directly depend on the characteristics of the DAC: even the most advanced power amplifier will not “save” a signal converted with significant errors. Accordingly, knowing the converter model, you can find detailed data on it — from official specifications to practical reviews — and evaluate how an amplifier with such a module meets your requirements.
Power (32 Ohm)
Rated power delivered by the amplifier when connected to headphones (or other load) with an impedance of 32 ohms.
By itself, the rated power is the highest average power that the device is capable of delivering for a long time without overloading; individual "jumps" of the signal may have a higher level, but in general, the capabilities of the amplifier are determined primarily by this indicator. At the same time, the physical features of the audio equipment are such that the actual power delivered to the load will depend on the resistance of this load. Therefore, in the characteristics of headphone amplifiers, data is often given for different impedance values. A resistance of 32 ohms allows you to achieve quite good sound quality by the standards of low-impedance headphones, while it is not so high as to create problems for the built-in amplifiers of smartphones and other compact equipment. Therefore, most wired general-purpose (non-professional) headphones are made precisely in this resistance, and if the amplifier characteristics generally indicate power for a certain impedance, then most often it is for 32 ohms.
In the most modest modern amplifiers, the output power at this impedance is
between 10 and 250 mW ; values of
250 – 500 mW can be called average,
500 – 100 mW are above average, and the most powerful models are capable of delivering
...f="/list/788/pr-19429 /">more than 1000 watts. The choice for specific power indicators depends on the sensitivity of the headphones used, as well as on the sound pressure level (in other words, loudness), which is planned to be achieved by the amplifier. There are special formulas and tables that allow you to calculate the minimum required power for a certain volume at a given sensitivity of the "ears". However, in the case of 32-ohm headphones, it does not always make sense to "get into the calculations." For example, the mentioned 10 mW is more than enough to drive headphones with a modest sensitivity of 96 dB to a volume of more than 105 dB — this is already enough to listen to music at quite a decent volume. And in order to achieve the same "ears" level of 120 dB, which provides a full perception of the loudest sounds (like explosions, thunder, etc.), you need to give out a power slightly higher than 251 mW. So in fact, you have to pay attention to this characteristic and resort to calculations / tables mainly in those cases when you have to use 32 Ohm headphones with a relatively low sensitivity — 95 dB or less.
Frequency range
Frequency range supported by the output amplifier; in other words, the range that this model is capable of delivering to headphones or another analogue audio device.
Theoretically, the wider the frequency range — the richer the sound of the amplifier, the lower the likelihood that the lower or upper edge of audible frequencies will be “cut off”. However, when evaluating this parameter, several nuances should be taken into account. Firstly, the average person is able to hear frequencies from 16 to 22,000 Hz, and with age, these boundaries gradually narrow. However, headphone amplifiers often have wider operating ranges, and they are very impressive — for example, for some models, a set of frequencies from 1 Hz to 60,000 Hz, or even up to 100,000 Hz, is claimed. Such characteristics are a kind of "side effect" from the use of high-end sound processing circuits; from a practical point of view, these numbers do not make much sense, but they are an indicator of the high class of the amplifier and are often used for advertising purposes.
The second nuance is that any headphones also inevitably have their own frequency limitations — and these limitations can be more significant than in an amplifier. Therefore, when choosing, it's ok to take into account the characteristics of the headphones: for example, you should not specifically look for an amplifier with an upper frequency limit of the full 22 kHz, if in the headphones that you plan to use with it, th...is limit is only 20 kHz.
In conclusion, also note that an extensive frequency range in itself does not guarantee high sound quality — it largely depends on other factors (frequency response, distortion level, etc.).
Signal to noise ratio
The ratio between the overall level of the desired signal produced by the amplifier and the level of background noise resulting from the operation of electronic components.
It is impossible to completely avoid background noise, but it is possible to reduce it to the lowest possible level. The higher the signal-to-noise ratio, the clearer the sound produced by the device, the less noticeable its own interference from the amplifier. In the most modest amplifiers from this point of view, this indicator ranges
from 70 to 95 dB — not an outstanding, but quite acceptable value even for Hi-Fi equipment. You can often find higher numbers —
95 – 100 dB,
100 – 110 dB and even
more than 110 dB. This characteristic is of particular importance when the amplifier operates as a component of a multi-component audio system (for example, "vinyl player — phono stage — preamplifier — headphone amplifier." The fact is that in such systems the final noise of all components at the output is summed up, and for sound purity it is extremely it is desirable that these noises be minimal
Separately, it is worth emphasizing that a high signal-to-noise ratio in itself does not guarantee high sound quality in general.
Dynamic range
The dynamic range provided by the amplifier.
The most simplified dynamic range can be described as follows: this is the range between the highest and lowest signal level at the output, within which normal audibility and the signal-to-noise ratio claimed in the characteristics (see above) are maintained. This parameter is calculated from the logarithmic ratio between the maximum and minimum signal level and is indicated in decibels; the larger the number, the wider the dynamic range.
Note that the overall range of any amplifier is wider than the dynamic range; however, if the output level is too low, the audible sound will be "clogged" by the device's own noise, and if the output level is too high, the level of distortion will increase markedly. Thus, the overall sound quality is usually determined precisely by the dynamic range; in particular, this indicator determines how effectively the amplifier is able to cope with sound that has significant differences in volume (for example, orchestral parts). As for specific numbers, the most modest values in modern headphone amplifiers are about 90 dB, in the most advanced models this figure can reach 130 dB or more.
Coef. harmonic distortion
The coefficient of harmonic distortion that occurs during the operation of the amplifier.
Any electronic circuits are inevitably subject to such distortions, and the quality and reliability of the sound at the output depends on their level. Accordingly, ideally, the harmonic coefficient should be as low as possible. So, as a general rule, a level of 0.09% and below (hundredths of a percent) is considered good, and a level of less than 0.01% (thousandths of a percent) is excellent. The exception is lamp devices: higher values \u200b\u200bare allowed in them (in tenths of a percent), however, this point in many cases is not a drawback, but a feature (for more details, see "Lamp").
It is also worth noting that a low harmonic coefficient is especially important when using the amplifier as part of multicomponent audio systems — for example, when listening to music from a vinyl player with an external phono stage. The fact is that in such systems the sum of distortions from all components affects the final sound — and it, again, should be as low as possible.
Level adjustment
The way to adjust the level provided in the amplifier, in other words, the way to control the volume.
Most often, a special
wheel(rotary control) is responsible for such adjustment, however, there are also models with
buttons. Here are the features of each option:
— Wheel. The most common type of volume control nowadays; its popularity is due primarily to two things. The first is ease of use: the control of the wheel is intuitive, and besides, such a knob can be found and turned by touch, blindly, without much difficulty (this is especially important for portable models — see "Type"). The second point is versatility: the wheel can be connected both with the simplest analogue control loop and with a digital circuit. Moreover, analogue control (considered optimal for high-end equipment) in modern headphone amplifiers is carried out only by rotary controls. The disadvantages of this option include perhaps some bulkiness compared to buttons, but even in pocket models this moment is often not critical.
— Buttons. Volume control with buttons; it can be either two separate keys or a rocker like those used in many portable gadgets. Anyway, such controls are more compact than castors. On the other hand, such control is carried out only electronically: the buttons send a signal to the control circuits, which change the volume accordingly. This format is considered less suitable for h
...igh-quality audio equipment than analogue control: additional digital circuits not only complicate the design, but are also a potential source of additional noise. Therefore, push-button control can rarely be found nowadays — in certain models of portable amplifiers (see "Type"), where this solution is provided mainly to reduce the size.Inputs
Types of inputs provided in the design of the amplifier.
Modern headphone amplifiers can be equipped with audio inputs of both analogue (
mini-Jack 3.5 mm,
Jack 6.35 mm,
RCA,
XLR) and digital formats (S / P-DIF with
coaxial or
optical connection), as well as
USB OTG and
USB type ports b. Here is a more detailed description of each of these inputs:
— Mini-Jack (3.5 mm). One of the most popular modern audio connectors. In this case, it is mainly used to connect to an analogue audio signal amplifier; this can be a line-level signal or sound from the headphone output from an external device (these nuances should be specified separately), while the connector itself most often has a classic three-pin format and is responsible for both stereo channels at once. Due to its small size, the mini-jack is very convenient for use in portable models (see "Type"). On the other hand, it is less noise-resistant than a 6.35 mm Jack of similar design, and has less extensive capabilities — in particular, it is almost never used for balanced connection. Therefore, in stationary models, this interface is much less common.
Separately, we note that other types of inputs can also be built into the 3.5 mm
...type hardware port — for example, coaxial and/or optical (see below for details). However, the presence of a mini-jack is indicated only if this connector is capable of operating in a traditional analogue format.
— Jack (6.35 mm). An audio connector, in many ways similar to the mini-jack described above — in particular, it is also used mainly for connecting an analogue audio signal. The key difference is in the larger sizes. Because of this, Jack type inputs are used much less frequently, and mainly in stationary technology (see "Type"); but, on the other hand, a large diameter expands the possibilities of the connector. First, the connection is more reliable than 3.5mm jacks, with less chance of interference and accidental disconnection. Secondly, such inputs can even be used for balanced connection (although such a possibility is far from mandatory, moreover, XLR connectors are more often used for balanced connection; see below about them and about a similar connection format). Therefore, for high-quality stationary equipment, such inputs are considered more preferable than mini-jack.
— RCA. RCA is technically a type of connector that can be used for a variety of purposes. However, in this case, a very specific application is implied — in the format of a line input (for an analogue audio signal). In this format, one physical connector is responsible for one channel of sound, so this type of input usually consists of a pair of jacks — for the left and right channels. In general, linear RCA is practically not used in portable devices, but it is very popular in stationary audio equipment. It is somewhat inferior to more advanced standards (like XLR, see below) in terms of functionality and noise immunity, but this interface is often quite enough for both everyday and simple professional use.
— XLR. Initially, XLR is a connector of a characteristic round shape, with a set of contacts in the form of pins (and sockets for them) and an additional retainer on the outer ring. It can have a different number of contacts and be used in different formats. However, in headphone amplifiers, when talking about XLR inputs, they usually mean an interface for balanced connection of an analogue (line) audio signal. Such an interface usually consists of at least a pair of three-pin connectors — one for each stereo channel (a rarer option is one common six-pin connector, in fact a two-in-one version). As for the balanced connection, this is a special format that uses three wires per channel (instead of the standard two) and a special way to process the signal at the input. Due to this method, interference due to third-party interference in the connection cable is mutually canceled when it enters the amplifier; in fact, the cable itself plays the role of a noise filter. This allows you to work even with fairly long wires without compromising the purity of the sound. On the other hand, XLR connectors are quite large, and balanced format support affects the cost of the device. Therefore, in general, this interface is considered professional, it is installed in amplifiers of the appropriate level, mostly stationary (with rare exceptions).
— Coaxial S/P-DIF. A variation of the S/P-DIF interface that uses an electrical cable (as opposed to the optical cable described below). In general, the S / P-DIF format allows you to transmit several channels of sound through one connector at once, including working with multi-channel formats (although stereo is most often used in headphone amplifiers). And the electrical version of this interface is somewhat cheaper than the optical one and does not require special care when handling the cable. Its disadvantage is some susceptibility to electromagnetic interference, however, to compensate for this moment, the cable is usually made shielded.
Note that the S / P-DIF coaxial input most often uses an RCA jack as a hardware connector. However, this interface should not be confused with the analogue RCA described above: these are fundamentally different standards that are not compatible with each other. In addition, in some models (in particular, portable ones), this type of input can be physically combined with a 3.5 mm jack; in this case, one socket can work in different formats (depending on the selected settings), and a cable with a special connector (or an appropriate adapter) is required to use the coaxial interface.
— Optical S/P-DIF. A variation of the S/P-DIF interface that uses a TOSLINK fibre optic cable to transmit digital audio in stereo or multi-channel format (however, the latter is not typical for headphone amplifiers). The main advantage of such a connection over the coaxial one described above is complete insensitivity to electromagnetic interference. On the other hand, the optical cable is quite delicate, it does not tolerate strong pressure and bending.
It is worth saying that in some amplifiers — especially portable ones — the optical input can be built directly into the 3.5 mm jack, and to work with such an input, you need a cable with a plug of the appropriate design. The connector itself can work in different formats — depending on the settings and the connected cable.
— USB (OTG). Initially, USB OTG is a standard that allows you to connect various USB peripherals (such as flash drives) to portable gadgets like smartphones or tablets. However, in headphone amplifiers, this function has its own specifics, it should be specified separately in each case. So, most models with USB OTG are portable, and in them this input is used in the classic format — to receive a digital audio signal from microUSB, USB-C or another similar connector in a portable gadget (if the gadget initially provides such an opportunity). But in stationary amplifiers (see "Type"), the name "USB OTG" can denote an interface for connecting to a PC, if this interface does not use USB Type B, but another type of connector. These nuances should be clarified separately.
— USB (Type B). Interface for connecting the amplifier to the USB port of a computer and transmitting sound in digital form; in other words, a connector for using the amplifier as an external sound card. Formally, USB Type B is a strictly defined type of USB connector that has a characteristic square shape; it is this connector that is usually installed in stationary models. But in portable devices, this role can be played by ports of a different type — for example, microUSB; however, they are also referred to as USB Type B in such cases.
Anyway, the point of connecting an amplifier in the format of an external sound card is, first of all, that the built-in sound cards of modern computers usually have rather modest characteristics, and much better sound can be achieved on external equipment.Power type
The type of power used by the amplifier.
In modern models, you can find
mains power,
battery and
USB port. At the same time, some devices may provide two options at once (or even all three at once) — this allows you to choose the most convenient way of feeding, depending on the situation. In addition, there are amplifiers with support for
Power Bank mode — this feature is also indicated in this paragraph, although it is not a type of power supply, but an additional function of models with a built-in battery.
Here is a more detailed description of each option:
— From the network. Powered from a conventional 230 V socket. Such power is very convenient from a practical point of view: the operating time of the amplifier is unlimited (as long as there is voltage in the network), and the output power can be almost any. The main disadvantage of this option is the actual dependence on sockets; however, for stationary models (see "Type") this point is not critical, so most of these devices use mains power (and most often — as the only option). There are also portable amplifiers with the ability to connect to the network — in such cases it is provided as an additional option that allows you to save battery power if there are outlets nearby (and most often also charge the battery during such use).
— From t
...he battery. Powered by its own built-in battery. Such a power supply complicates the design of the amplifier, increases its weight and cost, and the operating time on a charge is inevitably limited. On the other hand, the battery allows you to work regardless of the presence of outlets nearby. Therefore, this option is extremely popular among portable amplifiers (see "Type") — especially since it is easier to achieve high output power with a battery than with USB power (which is also suitable for such equipment). But stationary solutions with their own batteries are extremely rare — and in them, usually, the battery is a “fallback option” in addition to another type of power supply (and in some stationary amplifiers, the presence of a battery also depends on the modification).
— From the USB port. Powered by a USB connector — usually the same one that is used as a source of digital audio signal. The features of such a power supply no longer depend so much on the specific amplifier, but on the device with which it is used. So, when used with a PC, such a connection is in many ways similar to connecting to a network: the operating time is unlimited, and the power of the amplifier can be quite high (although not as high as when using an outlet), but there is no talk of freedom of movement. Smartphones and other mobile gadgets, on the contrary, are autonomous, but their power outputs are not very powerful. On the other hand, it is most often not required for them, and the unequivocal disadvantage can only be called the moment that the amplifier additionally consumes the battery of the gadget. Connecting to a laptop combines the features of both options described above: the power supply is comparable to the USB ports of stationary PCs, while the laptop can work without an outlet.
— Power bank function. The ability to operate the amplifier in power bank mode — that is, an external battery for charging various gadgets, such as smartphones or pocket players. This function by definition means that the amplifier has a built-in battery (see above); the device itself is most often portable (see "Type"), however, there are also stationary solutions with Power Bank mode. Note that the specific battery capacity in amplifiers with this function is different; often it is very low, and the device allows you to “prolong the life” of the gadget rather than fully charge it. However, even this possibility can be very useful — for example, if you need to wait for an important call, but you forgot to charge your smartphone, and there is no charger or outlet for it at hand.