Device
—
Airbrush. General purpose spray guns — in other words, traditional spray guns that do not belong to any of the specialized categories described below. At the same time, the functionality of such devices can be quite diverse — from relatively small tools for hard-to-reach areas and small areas to quite powerful performant solutions that are already approaching paint stations.
—
Airbrush. A miniature variety of spray guns, distinguished primarily by very small nozzle sizes — less than 1 mm, and more often up to 0.5 mm. Thanks to this, airbrushes are optimally suited for delicate work, where accuracy is most important; with the help of such a tool, you can even create full-fledged paintings (for example, those same “airbrushes” that adorn cars).
—
Roller. An improved version of the conventional paint roller, supplemented by a paint supply system. Thanks to this, additional convenience is provided during work: there is no need to periodically dip the roller into a container with paint, and the coating itself is applied as accurately and evenly as possible.
—
Plaster. A variety of spray guns used not for painting, but for plastering. One of the characteristic features of such tools is the large diameter of the nozzle: thanks to this, it is not clogged with mortar particles and is easily cleaned after work is complet
...ed. In addition, plaster guns are usually equipped with rather large (about 5 – 7 liters) own tanks; such a reservoir is usually supplemented with a handle for the convenience of holding the tool with the second hand.
— Paint station. Units designed for large volumes of work, where high performance is of decisive importance. A mandatory feature of paint stations are remote compressors (see below) of high power and large size, usually mounted on a stand or even a trolley for ease of transportation. And often there is no own paint tank at all, and the working composition is supplied from an external container (for example, a bucket). Also note that painting stations often allow two guns to be connected to one compressor at once (see below).Type
The type is indicated by the energy source from which the spray gun operates. Nowadays, you can find
pneumatic,
electric(mains and
battery), as well as
mechanical and
gasoline models. Here are their main features:
— Pneumatic. Spray guns powered by compressed air from an external compressor. In other words, the delivery package for such a tool includes only a spray gun (gun, airbrush, etc.); it requires a separate compressor to operate. At first glance, this creates certain inconveniences; however, such a configuration also has noticeable advantages. Firstly, there is no need to overpay for a compressor if it is already “on the farm” (a separate example of such a situation is a construction site where a powerful stationary compressor is used for several pneumatic tools). Secondly, the nozzle and compressor can be selected at your own discretion, without relying on the equipment selected by the manufacturer. In light of this, most modern spray guns are made pneumatic. The obvious disadvantages of such devices include their unsuitability for working with airless spray systems, however, such systems are used much less frequently than air systems, so this nuance is not key.
- Electric. In this case, we mean wall-powered spray guns (battery-powered models are placed in a separate category,
...see below). Devices of this type consist of the sprayer itself, as well as a compressor (built-in or remote). One of the advantages of this option is the presence of a compressor, thanks to which such a spray gun, in fact, only needs an outlet. In addition, such units can use both air and airless spray systems. The disadvantages of electric models include a higher cost than pneumatic ones, as well as the inability to select a working nozzle and a compressor separately - as a rule, spray guns of this type are sold in ready-made kits.
- Rechargeable. Spray guns equipped with electric compressors powered by their own batteries. The key advantage of such tools is their autonomy, the ability to work even in the absence of sockets nearby. On the other hand, it is difficult to achieve high power and performance with a battery; the continuous operation time of such sprayers is limited by the battery charge (and a source of electricity will still be required to replenish the charge); and the design itself is more complex and more expensive than that of analogues powered from an outlet. Therefore, cordless spray guns are not particularly widespread in our time.
- Mechanical. Units in which paint is supplied by the user’s muscular strength - in other words, to do this, you need to manually pump the pump lever. This operating scheme is as simple and reliable as possible, but it is poorly suited for traditional sprayers. Therefore, “mechanics” is extremely rare in our time, mainly among rollers (see “View”).
- Gasoline. Models with this type of power supply combine high power and independence from electrical networks, but they are quite bulky, more complex to operate and repair, more expensive (both in terms of their own cost and the price of fuel) and are generally designed for industrial use outdoors . Therefore, they are not widely used and are used where, for one reason or another, electrical analogues are not applicable.Power consumption
The power consumed by the operation of an electric tool (see "Type").
Most modern spray guns, even performant ones, have a rather low power: for example, models
with more than 1 kW are extremely rare, and in most cases, power consumption does
not exceed 500 W at all. So when connecting such equipment to sockets, there are usually no problems; only single units of high performance, requiring 3.5 kW or more, have to be connected according to special rules (directly to the shield). In other cases, data on power consumption is most often not needed for normal use and may be required only for specific tasks — for example, to calculate the load on an autonomous generator.
Rated pressure
Nominal air pressure in the spray gun.
The general meaning of this parameter depends on the type of instrument (see above). So, in pneumatic models, nominal pressure data is required for connection to an external compressor. It is this pressure that this compressor must create at the inlet to the atomizer; too low values will lead to a decrease in efficiency, too high are fraught with breakdowns and even accidents with injury to others.
In turn, for electric models, the nominal pressure is the air pressure created by the unit's own compressor; the complete atomizer was originally designed for the same pressure. So in this case, this parameter is more of a reference than practically significant; it may be useful only for connecting replacement nozzles to the compressor (or vice versa, for using an existing nozzle with a third-party compressor).
As for specific pressure values, they are primarily determined by the spray system (see below). The diversity here is quite high: the most modest units give out
less than 2 bar,
2-5 bar compressors are quite popular
, 5-10 bar models are relatively rare, and some powerful performance solutions provide a pressure of
100 bar or more.
Paint consumption
Consumption of paint or other material (for example, mortar for plaster) when the spray gun is operating in normal mode.
The higher the flow rate, the more material the tool can apply per unit of time, the better it is suitable for processing large areas and for applying thick coatings. On the other hand, not all types of work require high productivity, and sometimes relatively low consumption is optimal. Detailed recommendations on this subject for different situations can be found in special sources.
Nozzle size
The diameter of the nozzle at the outlet of the spray gun.
It is from this nozzle that paint or other working material comes out. And the productivity and spot size at the exit depend on the diameter. Accordingly, larger nozzles are better suited for processing large surfaces, while smaller nozzles provide greater precision and accuracy. Thus, this parameter is directly related to the type of device (see above). There are also
spray guns with a replaceable nozzle, when more than one nozzle is provided in the kit, which expands the possibilities of using the device.
Container volume
The total volume of the paint reservoir supplied with the gun.
Large tank, on the one hand, allows you to "charge" a lot of material and work for a long time. On the other hand, it increases the size and weight of the device; and a large amount of paint will also weigh accordingly (although for models with a separate tank location - see above - this is not critical). Therefore, the thinner and more delicate the work for which the spray gun is designed, the, as a rule,
the smaller the tank volume : for example, in airbrushes (see "View") it rarely exceeds 50 ml, and in plaster models, in turn, can be measured liters. Therefore, most models have a volume of no more than a liter, namely
500 ml,
600 ml,
700 ml,
800 ml,
1000 ml.
Tank material
The material from which the complete reservoir of the spray gun is made.
— Plastic. Plastic is characterized by a combination of low cost with lightness and reliability. It is somewhat inferior to metal in strength, however, in the case of tanks for spray guns, this is not critical; in addition, the plastic tank can be made transparent, which makes it easier to keep track of the paint level. Thanks to all this, plastic is found in devices of all types and price categories. Among its shortcomings, sensitivity to certain types of solvents can be noted; however, there are resistant varieties of plastic that are practically devoid of this feature.
—
Metal. The main advantage of metal tanks is high strength and reliability. On the other hand, they are noticeably more expensive and heavier than plastic ones, and besides, they are not transparent (at best, a built-in indicator in the form of a window can be provided). Because of this, the metal is less common.
— Glass. The glass reservoirs are transparent and allow you to easily control the amount of remaining paint. In addition, this material is chemically inert and compatible with almost any working substance. However, glass has a serious drawback — fragility, which is why it has not received much distribution and is found only in some models of airbrushes (see "View").