Dark mode
USA
Catalog   /   Automotive   /   Vehicle Accessories   /   Coating Thickness Gauges

Comparison Yunombo YNB-100 vs Allsun EM2271

Add to comparison
Yunombo YNB-100
Allsun EM2271
Yunombo YNB-100Allsun EM2271
Outdated ProductOutdated Product
User reviews
0
0
0
2
TOP sellers
Main
Automatic shutdown.
Typeeddy currentelectromagnetic
Max. thickness (ferrous met.)1800 µm2000 µm
Max. thickness (non-ferrous met.)1800 µm
Measurement speed1 с1 с
Max. error1 %2 %
Auto switch-off
Display backlight
Power source2xCR20321xCR2032
Operating temperature+18 °C ~ +35 °C0 °C ~ +40 °C
Dimensions83х35х22 mm69x38x20 mm
Weight64 g23 g
Added to E-Catalogdecember 2020june 2018

Type

The type determines how the thickness gauge works.

Eddy current. Devices, the operation of which is based on the fact that the sensor, using an alternating electromagnetic field, induces special currents in the metal under the paint — the so-called. vortex. Such currents create their own electromagnetic radiation, their power — and, accordingly, the power of secondary radiation — depends on the distance between the sensor and the metal, that is, on the thickness of the paintwork. Devices of this type can be used with any conductive materials, but it is believed that they work best with non- ferrous metals(in particular, aluminium).

Electromagnetic. Devices operating on the basis of basic electromagnetic phenomena — magnetic induction or the Hall effect. Simply put, the sensor of such a thickness gauge creates a magnetic field, when a magnetic object enters the sensor’s coverage area, the field characteristics change, and these changes determine the distance to the object — in this case, this distance corresponds to the thickness of the paintwork, because the sensor is pressed tightly during measurements to the surface. Electromagnetic devices do a better job with steel and other ferrous metals than eddy current ones, however, such devices cannot work with non-magnetic materials.

— Electromagnetic / eddy...current. Universal thickness gauges that combine both of the above principles of operation and are capable of using either of them. At the same time, some models are able to automatically determine the type of metal and turn on the appropriate mode of the sensor. This is the most convenient option from the user's point of view, despite the fact that it is not so expensive. As a result, universal devices are very popular today.

Max. thickness (ferrous met.)

The maximum coating thickness that the instrument can detect when measuring on ferrous metals such as steel. With a larger coating thickness, the thickness gauge sensor simply cannot “catch” on the metal surface under the paint, and effective measurement will not be possible. This parameter is indicated in micrometers — thousandths of a millimetre; the larger it is, the more versatile the device is, the wider the possibilities for its use. On the other hand, a large maximum measurement thickness can adversely affect the accuracy when measuring small values.

For modern thickness gauges, the maximum thickness up to 1000 microns is considered small, from 1000 to 1500 microns — small, from 1500 to 2000 microns — medium, more than 2000 microns — significant. In the most advanced professional-level models, this figure can reach 20 – 30 cm.

Max. thickness (non-ferrous met.)

The maximum coating thickness that the instrument can detect when measuring non-ferrous metals such as aluminium alloys. With a larger coating thickness, the thickness gauge sensor simply cannot “catch” on the metal surface under the paint, and effective measurement will not be possible. This parameter is indicated in micrometers — thousandths of a millimetre; the larger it is, the more versatile the device is, the wider the possibilities for its use. On the other hand, a large maximum measurement thickness can adversely affect the accuracy when measuring small values.

For modern thickness gauges, the maximum thickness up to 1000 microns is considered small, from 1000 to 1500 microns — small, from 1500 to 2000 microns — medium, more than 2000 microns — significant. In the most advanced professional-level models, this figure can reach 20 – 30 cm.

Max. error

The maximum measurement error provided by the device, in other words, the largest deviation from the real value of the measured value that may occur during the measurement process. The smaller this indicator, the more accurate the device, the smaller the error it gives in the measurement process; on the other hand, high accuracy has a corresponding effect on cost.

Specifically, in thickness gauges, an accuracy of 10% is considered low, 5% is average, 3% is good, and less than 3% is excellent.

Auto switch-off

The presence in the device of the automatic shutdown function: the device turns off on its own if the user has not performed any actions with it for some time. The response time for this function is usually a few minutes.

Auto-off saves battery power; it is especially useful if the user forgets to turn off the instrument manually.

Display backlight

The presence of a backlight on the display of the device. The backlight allows you to see the data on the screen even in complete darkness. It can be turned on either manually, by pressing a separate button, or automatically, when the results of the next measurement are displayed on the screen.

Power source

All power sources can be divided into two categories: replaceable batteries in a standard size and built-in batteries. The former are convenient in that a dead battery can be quickly replaced with a fresh one, while the original battery will have to be charged — and this takes time and an external power source. In addition, batteries can be selected at your discretion by type (disposable/rechargeable) and capacity. Batteries, in turn, can be made more compact and at the same time capacious, besides, they do not need to constantly spend money on fresh batteries.

The main characteristic of a replaceable battery is its size; The most popular sizes found in thickness gauges are as follows:

AAA. Elements, also known as "mini-finger" or "little finger". They have a cylindrical shape with a diameter of 11 mm and a length of 44 mm. Usually used in 2 or 3 pieces. They can be made in the form of batteries.

AA. Elements, also known as "finger". They have a cylindrical shape with a diameter of 13.5–14.5 mm and a length of 50.5 mm. Usually used in 2 pieces. They can be made in the form of batteries.

PP3. Batteries of a characteristic rectangular shape, with a pair of contacts on one of the ends. They have a nominal voltage of 9 V. They can be made rechargeable, however, for a number of reasons, this op...tion has not received distribution; disposable “PP3” are used much more often.

— CR2032. One of the most popular sizes of "tablet" batteries. They have the shape of a disk 3.2 mm thick and 20 mm in diameter. They are used in the most miniature devices, where compactness is crucial. They are only made disposable.

— LIR2032. A rechargeable version of the CR2032 batteries described above, made using lithium-ion technology.

— A23. Cylindrical batteries with a diameter of 10 mm and a length of 29 mm. They are distinguished by a rather high voltage — 12 V. They are usually made disposable.

As for batteries, the key parameter for them is the technology by which the battery is made:

— Li-Ion. Lithium-ion technology allows you to create batteries with a good charge density — that is, compact and at the same time capacious. In addition, they are not subject to the “memory effect” (reduction in capacity when charging to full discharge) and charge quickly enough. Of the shortcomings of such elements, one can only note the likelihood of overheating and fire in case of malfunctions, however, subject to the operating rules and the use of serviceable chargers, the probability of this is almost zero.

— Li-pol. An improved version of the lithium-ion batteries described above, providing even greater charge density, but at a slightly higher cost.

Operating temperature

The temperature range at which the thickness gauge can normally perform its functions. If you go beyond this range, the device may not break down immediately, but you won’t have to talk about accurate measurements. Note that you have to pay attention to this parameter mainly in cases where the device is planned to be used outdoors. So, for use in winter, it is worth making sure that the device is able to operate at temperatures below zero, and for hot climates, it is desirable that the upper limit of the range is +40 °C and above.
Yunombo YNB-100 often compared