Dark mode
USA
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Canon EOS C100 Mark II vs Canon LEGRIA mini

Add to comparison
Canon EOS C100 Mark II
Canon LEGRIA mini
Canon EOS C100 Mark IICanon LEGRIA mini
Compare prices 3
from $294.00
Outdated Product
TOP sellers
Featuresprofessionalpocket
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Sensor sizeAPS-C1/2.3"
Number of megapixels9.8412.8
Effective megapixels8.298.99
Camera lens
Interchangeable lens
Bayonet (mount)Canon EF
Focal length (35mm equivalent)16.8 — 35 mm
Aperturef/2.8
Manual focus
Video shooting
Video resolution1920x1080 px1920x1080 px
Frame frequency30 fps25 fps
Recording formatsMPEG-4 AVC/H.264MP4
Video recording speed28 Mbps, 24 Mbps, 17 Mbps24 Mbps, 17 Mbps, 4 Mbps, 1.5 Mbps
Minimum illuminance0.25 lux
Night shooting
Shutter speed1/3 — 1/2000 с1/25—1/2000 с
White balanceauto, Kelvin settings (range: 2000K to 15000K)auto, daylight, incandescent
Auto exposure8
Scene programmesauto, P, food and fashion, sports, night, beach
Pre-recording (Pre-Rec)
Sound recordingPCM 16bit (2ch, 48kHz)MPEG-2 AAC-LC 2ch
Photo
Number of megapixels12
Max. photo size4000x3000 px
Picture while shooting
Screen
Screen size3.5 "2.7 "
Screen resolution1230 K pixels
Touch screen
Features
Features
viewfinder
hot shoe
 
 
detachable microphone
 
 
built-in speaker
Wi-Fi module
 
Memory and sockets
Memory card supportSD, SDHCMicro SD, Micro SDHC
Memory card slots2
Connectors
USB
HDMI
AV output
microphone input
XLR microphone input
headphone jack
USB
HDMI
 
 
 
 
Battery
Battery typeBP-955NB-4L
Battery capacity4900 mAh760 mAh
Battery life4.58 h1.15 h
General
Dimensions (WxHxD)188x280x334 mm76x22x96 mm
Weight1950 g160 g
Color
Added to E-Catalogapril 2017august 2013

Features

Amateur. As the name implies, these cameras are designed for relatively simple tasks and normal everyday use — filming family chronicles, solemn events, small documentaries, video presentations, etc. Note that amateur devices can have a fairly wide range of settings and provide high image quality. However, even the most advanced options cannot replace professional equipment; and the general principle of their design is to simplify and facilitate operations. One of the characteristic features of this type of camera is its compact size (although larger than that of the pocket cameras described below), which make it easy to hold the device in one hand. In addition, models with a viewfinder are very rare among them (see "Features"), and models with an interchangeable lens (see below) are not found at all.

Professional. Cameras designed for professional shooting are outwardly distinguished by their large size — they are noticeably larger than amateur ones, and are often designed to be carried on the shoulder, and not held in hands (although there are compact models comparable to amateur ones). This is primarily due to the abundance of features: models of this type have many additional settings, each of them can be controlled manually, as well as an extended set of interfaces, more capacious batteries, mounts for external microphones, etc. It is also worth noting the p...resence of the devices with interchangeable lenses (see below) in this class . Professional cameras are excellent for TV journalism and filming, but they are poorly suited for personal use. And the point here is not only in large size and high cost: handling such a device requires certain skills, and an abundance of settings can create many problems for inexperienced users.

3D camcorder. This category includes all models that have the 3D feature (see below). The specific appearance and functionality of such cameras may vary: some are closer to the amateur models described above, others are closer to professional ones. The same applies to the implementation of 3D: some models are initially equipped with a stereo lens, in others this feature is performed with an adapter mounted on traditional "two-dimensional" optics.

Pocket. This type can be described as a specific kind of amateur camera, designed for maximum compactness (including, in fact, the possibility of carrying in your pocket). Some pocket models are similar in appearance to the "shrunken to the limit" versions of full-size cameras, others resemble mobile phones with a specific placement of the lens — on the back cover. Anyway, such cameras are extremely convenient to carry and they allow you to always have a recording device at hand, the capabilities of which are significantly superior to those of phones. On the other hand, for the sake of portability, you usually have to sacrifice many specifications — the capabilities of optics, the size of the sensor, etc. — because of this the capabilities of pocket cameras are significantly lower than even amateur ones, not to mention professional ones.

Sensor size

The physical size of the camcorder sensor. It is usually measured diagonally and is indicated in fractions of an inch — for example, 1/3 "or 1/2.33" (the second option is larger, respectively). In addition, sensors of a “photographic” format can be installed in video cameras, in which case the corresponding designation is used — for example, APS-C.

The larger the sensor, the higher the image quality it can provide (all else being equal). This is due to the fact that on larger sensors, each individual pixel is larger, more light falls on it, which increases sensitivity and reduces noise; this is especially important for shooting in low light. For amateur purposes, small sensors are quite enough, but in professional cameras (see "Features") this parameter is at least 1/3". The exception, however, are models with several sensors (see "Number of sensors") in them each individual sensor is quite small, and high quality is ensured by image processing features.

Number of megapixels

The total number of individual photosensitive points (pixels) provided in the design of the sensor (1 megapixel corresponds to a million pixels). This parameter takes into account both those points on which the light falls, and service points that are not directly involved in the construction of the image. Therefore, in modern video cameras, it is more of a reference than practically significant; the actual image quality depends primarily on the number of effective megapixels (see below).

Effective megapixels

The number of light sensitive pixels directly involved in the construction of the image. These are the dots on which the “image” projected by the lens onto the matrix falls. In addition to them, there are also service pixels that are not illuminated during camera operation — they provide auxiliary information necessary for processing the resulting image. Also, when calculating effective megapixels, the reserve area required for electronic stabilization is usually not taken into account (see "Image Stabilization").

The value of the number of effective pixels for different modes of operation of the camcorder will also be different. For example, when recording video, many cameras use multiple pixels to build a single dot on the image; this is due to the fact that the sensor resolutions significantly exceed those required for video shooting (for example, the Full HD standard technically corresponds to only 2.07 megapixels). As a result, the image quality depends more on the sensor size (see above) than on the resolution. And among sensors of the same size, high resolution allows user to get better colour rendering and higher clarity (however, not always — a lot also depends on the peculiarities of image processing). If we are talking about photography, then more megapixels means a higher resolution of the resulting image, but the quality of such a picture can be relatively low due to the increased noise level and low sensitivity of each individual pixel.

Interchangeable lens

The ability to change the standard camera lens to another one that differs in specifications (viewing angle, magnification, etc.). This feature is found among professional models (see "Features"). It significantly expands the possibilities of using the camera: for example, for filming sports events from a remote point, you can install a “long-range” telephoto lens, for a mass event — a wide-angle one, etc.

The range of compatible lenses may vary. Initially, camcorders used specialized optics, designed only for this class of devices, but relatively recently, models with “photographic” bayonets (see below) that are compatible with lenses for digital cameras have appeared. In such cases, the lens may not be included in the package at all — it must be purchased separately, as for a DSLR camera in the “body” version.

Bayonet (mount)

Bayonet type — type of a mount for an interchangeable lens (see above) provided in the design of the camcorder. This paragraph specifies only standard mounts used in camera lenses; camcorders that are not compatible with such lenses usually use specialized mounts that have not gained wide popularity.

— Canon EF. Bayonet, originally designed for Canon EOS DSLR cameras; Recently, camcorders have also been produced under this brand. Optics for EF are also made by third-party manufacturers, but the mount itself is used exclusively in Canon technology, because. this standard is not open.

— Micro Four Thirds (4:3). This bayonet is part of a standard of the same name developed by Olympus and Panasonic primarily for mirrorless digital cameras. Used in Panasonic models because Olympus practically does not release "classic" camcorders.

— Sony E. Bayonet, created by Sony for branded devices; unlike all those described above, it was originally intended not only for cameras (mirrorless), but also for camcorders.

— PL-Mount. Mount used in professional video equipment. Its main feature is the ability to mount the lens in 4 different positions — straight, "upside down" and rotated 90° to the right or left. This expands the possibilities of using the camera. In addition, Pl-Mount is characterized by high connection reliability, which is important when working with massive high-end optics.

Focal length (35mm equivalent)

Focal length of a standard video camera lens in terms of a 35 mm full-frame sensor. This parameter is also called the "equivalent focal length" — EFL.

The focal length itself is the distance from the optical centre of the lens (when focus to infinity) to the sensor, at which the sharpest image is obtained on the sensor. It is one of the key characteristics of any lens, because. determines the viewing angles, the degree of approximation and, accordingly, the specifics of the use of optics. At the same time, it is impossible to compare different options in terms of the actual focal length: the laws of physics are such that with different sizes of sensors, the same focal length will give different viewing angles. Therefore, EFL was adopted as a universal characteristic and criterion for comparison. It can be described as the focal length that a 35mm lens with the same viewing angles would have.

The larger the focal length, the narrower the viewing angle will be and the higher the degree of approximation of the visible scene. Optics with EFL up to 18 mm belongs to the class of ultra wide-angle ("fisheye") and is used primarily to create artistic effects. Distances up to 40 mm correspond to "wide angles", 50 mm gives the same degree of approximation as that of the naked eye, the range of 70-100 mm is considered optimal for portrait shooting, and large values allow the use of optics already as a telephoto lens. Knowing these provisions, one can approximately...evaluate the capabilities of the lens and its suitability for certain tasks; there are more detailed recommendations, they are described in special sources.

Also note that modern video cameras are usually equipped with lenses with a variable focal length (zoom), which allows you to change the degree of approximation and viewing angle; see "Optical Zoom" for details.

Aperture

Aperture of a standard video camera lens.

This parameter describes how much the lens attenuates the light output. Usually it is written as a ratio between the diameter of the active hole and the focal length of the lens, while the first value is taken as one and denoted as f — for example, f/1.8 or f/5.6. Moreover, the smaller the number in such a record, the higher the aperture ratio: for example, in our example, the first option is “lighter” than the second. Also note that most lenses with a variable focal length (see above) also have a variable aperture — in such cases it is indicated by the range from maximum to minimum (from a smaller number to a larger one).

A high aperture ratio is important primarily when shooting in low light conditions: it allows you to capture an image without “lifting up” the sensor sensitivity and without creating additional artifacts in the form of noise, and in the photo shooting mode, you can also work with shorter shutter speeds (which is useful for dynamic scenes). In addition, the higher the aperture, the lower the depth of field and the easier it is to get a blurry background. Note that for simple everyday tasks this parameter does not play a decisive role, but in professional shooting it can be very significant.

Manual focus

Manual focus mode in the standard lens of the video camera (or, if the lens is not included, the ability to work with optics that have this mode). This allows the operator to control the sharpness in the frame himself, without relying on automation.

The point of this feature is that even the most advanced autofocus systems do not always work as expected. This is especially critical in professional shooting: many artistic techniques related to depth of field can only be implemented manually. On the other hand, this mode of operation is more difficult than shooting with autofocus, it requires certain skills and constant control. Therefore, manual focus is quite rare in amateur models (see "Features"), but is almost mandatory for professional ones.

Note that some of these lenses do not have autofocus at all.
Canon EOS C100 Mark II often compared