Min. RPM
The lowest speed at which the cooling fan is capable of operating. Specified only for models with speed control (see below).
The lower the minimum speed (with the same maximum) — the wider the speed control range and the more you can slow down the fan when high performance is not needed (such a slowdown allows you to reduce energy consumption and noise level). On the other hand, an extensive range affects the cost accordingly.
Max. air flow
The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.
The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance
does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even
more.
It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.
Static pressure
The maximum static air pressure generated by the fan during operation.
This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.
Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.
Noise level
The standard noise level generated by the cooling system during operation. Usually, this paragraph indicates the maximum noise during normal operation, without overloads and other "extreme".
Note that the noise level is indicated in decibels, and this is a non-linear value. So it is easiest to evaluate the actual loudness using comparative tables. Here is a table for values found in modern cooling systems:
20 dB — barely audible sound (quiet whisper of a person at a distance of about 1 m, sound background in an open field outside the city in calm weather);
25 dB — very quiet (normal whisper at a distance of 1 m);
30 dB — quiet (wall clock). It is this noise that, according to sanitary standards, is the maximum allowable for constant sound sources at night (from 23.00 to 07.00). This means that if the computer is planned to sit at night, it is desirable that the volume of the cooling system does not exceed this value.
35 dB — conversation in an undertone, sound background in a quiet library;
40 dB — conversation, relatively quiet, but already in full voice. The maximum permissible noise level for residential premises in the daytime, from 7.00 to 23.00, according to sanitary standards. However, even the noisiest cooling systems usually do not reach this indicator, the maximum for such equipment is about 38 – 39 dB.
Pump size
The dimensions of the pump that the water cooling system is equipped with.
Most often, this parameter is indicated for all three dimensions: length, width and thickness (height). These dimensions determine two points: the space required to install the pump, and the diameter of its working part. With the first, everything is quite obvious; we only note that in some systems the pump simultaneously plays the role of a water block and is installed directly on the cooled component of the system, and it is there that there should be enough space. The diameter approximately corresponds to the length and width of the pump (or the smaller of these dimensions if they are not the same — for example, 55 mm in the model 60x55x43 mm). Some operating features depend on this parameter. So, the large diameter of the pump allows you to achieve the required performance at a relatively low rotation speed; the latter, in turn, reduces the noise level and increases the overall reliability of the structure. On the other hand, a large pump costs more and takes up more space.
Pump rotation speed
The speed at which the working part of the pump rotates, which is nominally provided in the water cooling system.
High speed, on the one hand, has a positive effect on performance, on the other hand, it increases the noise level and reduces the time between failures. Therefore, with the same performance, relatively “slow” pumps are considered more advanced, in which the necessary pumping volumes are achieved due to the large diameter of the working part, and not due to speed.
Pump power source
Type of power connector for the water pump.
—
3-pin. The three-pin power connector on older motherboards does not allow you to control the speed of the water pump motor in liquid cooling systems. At the same time, the pump always works in the maximum performance mode. Fresh "motherboards" are able to change the voltage on such connectors, thereby providing a change in engine speed.
—
4-pin. When using a 4pin power connector, it is supposed to control the speed of the pump motor using pulse-width modulation. A voltage of 12 V is applied to it with pulses. By changing the duration of the pulses, you can accurately set the speed of the water pump motor.
—
SATA. The SATA power connector will come in handy if all free 3pin and 4pin connectors are occupied on the motherboard.
Display
Remote or built
-in information display in the design of the cooling system. The screen is used to display information about temperature, fan speed, voltage, etc. In advanced implementations, the display can be used to control cooling parameters to ensure optimal system performance and stability.
Lighting
The presence
of its own illumination in the design of the cooling system.
The backlight serves a purely aesthetic function — it gives the device a stylish appearance that blends well with other components in the original design. Thanks to this, such cooling systems are especially appreciated by gamers and fans of external PC modding — especially since the lighting can be different, and the most advanced models even provide backlight synchronization with other components (see below). On the other hand, this function does not affect the efficiency and performance, and the overall cost is inevitably affected, sometimes quite noticeably. Therefore, if the appearance does not play a fundamental role for you, the best choice, most likely, will be
a cooling system without backlight.