USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo Legion Pro 7 16IRX8 [P7 16IRX8 82WR0000US] vs Apple MacBook Pro 14 2023 M3 [MTL73]

Add to comparison
Lenovo Legion Pro 7 16IRX8 (P7 16IRX8 82WR0000US)
Apple MacBook Pro 14 (2023) M3 (MTL73)
Lenovo Legion Pro 7 16IRX8 [P7 16IRX8 82WR0000US]Apple MacBook Pro 14 2023 M3 [MTL73]
from $1,349.99 
Expecting restock
Compare prices 4
TOP sellers
Main
miniLED display with 120 Hz refresh rate, updated M3 processor, media processor H.264, HEVC, ProRes and ProRes RAW with hardware acceleration, system of six Hi-Fi speakers.
Typelaptoplaptop
Screen
Screen size16 "14.2 "
Screen typeIPSminiLED
Surface treatmentanti-glaregloss
Screen resolution2560x1600 (16:10)
3024x1964 /Liquid Retina XDR/
Refresh rate240 Hz120 Hz
Brightness500 nt600 nt
Contrast1200 :11000000 :1
Colour gamut (sRGB)100 %
Pantone certification
TÜV Rheinland certificate
HDRHDR10, Dolby Vision HDR10
VESA DisplayHDR CertificationDisplayHDR 400
NVIDIA G-Sync
Light sensor
CPU
SeriesCore i9Apple M3
Model13900HX
Code nameRaptor Lake (13th Gen)
Processor cores24 (8P+16E)8
Total threads32
CPU speed1.6 GHz
TurboBoost / TurboCore frequency5.4 GHz
CPU TDP55 W
3DMark0617884 score(s)
Passmark CPU Mark46764 score(s)
SuperPI 1M6.2 с
RAM
RAM16 GB8 GB
Max. RAM32 GB
RAM typeDDR5
RAM speed5600 MHz
Slots2built-in
Graphics card
Graphics card typededicatedintegrated
Graphics card seriesNVIDIA GeForceApple
Graphics card modelRTX 4070M3 10-Core
Video memory8 GB
Memory typeGDDR6
GPU TDP140 W
VR
3DMark0655615 points
3DMark Vantage P100062 points
Storage
Drive typeSSD M.2 NVMeSSD
Drive capacity1024 GB512 GB
M.2 drive interfacePCI-E 4.0 4x
M.2 drive size22x80 mm
Additional M.2 connector1
Addittional M.2 connectors interfacePCI-E 4.0 4x
Additional M.2 drive size22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
 
Card reader
 /SDXC/
USB 3.2 gen14
USB C 3.2 gen22
USB42
Thunderbolt interfacex2 v4
Alternate Mode
Monitors connection31
LAN (RJ-45)1 Gbps
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
Bluetoothv 5.1v 5.3
Multimedia
Webcam1920x1080 (Full HD)
1920x1080 (Full HD) /FaceTime/
Camera shutter
Speakers26
Brand acousticsHarman
Audio decodersDolby Atmos
Security
 
fingerprint scanner /Touch ID/
Keyboard
BacklightRGB per keywhite
Key designisland typeisland type
Num block
Input devicetouchpad
touchpad /Force Touch/
Battery
Battery capacity100 W*h70 W*h
Operating time5.9 h22 h
Powered by USB-C (Power Delivery)
Power Delivery140 W
Fast charge
Charging time100% in 80 min
Power supply Included300 W70 W
General
Preinstalled OSWindows 11 Home
MacOS /Sonoma/
Materialaluminiumaluminium
Dimensions (WxDxT)363x262x26 mm313x221x16 mm
Weight2.5 kg1.6 kg
Color
Added to E-Catalognovember 2023november 2023

Screen size

Diagonal size of laptop display.

The larger the screen, the more convenient the laptop for watching high-definition movies, modern games, working with large-format graphic materials, etc. Large screens are especially important for multimedia and gaming models. On the other hand, the diagonal of the display directly affects the size and cost of the entire device. So if portability is key, it makes sense to pay attention to relatively small solutions; especially since most modern laptops have video outputs like HDMI or DisplayPort and allow connection of large-format external monitors.

In light of all this, the actual maximum for laptops these days is 17"(17.3"); however larger devices (18") reappeared at the beginning of 2023. The standard option for general purpose laptops is 15"(15.6"), less often 16", a diagonal of 13"(13.3") or 14" is considered small by the standards of such And smaller screens can be found mainly in specific compact varieties of laptops — ultrabooks, 2 in 1, transformers, netbooks; among such devices there are solutions for 12 ", 11" and even 10" or less.

Screen type

The technology by which the matrix of the laptop is made.

Matrices of the TN+film, IPS and *VA types are most widely used nowadays; less common are screens like OLED, AMOLED, QLED, miniLED, as well as more specific solutions like LTPS or IGZO. Here is a more detailed description of all these options:

— TN-film. The oldest, simplest and most inexpensive technology currently in use. The key advantages of this type of display are low cost and excellent response time. On the other hand, such matrices are not of high image quality: brightness, colour fidelity and viewing angles of TN-film screens are at an average level. These indicators are quite enough for working with documents, web surfing, most games, etc.; however, for more serious tasks that require a high-quality and reliable picture (for example, design or photo / video colour correction), such screens are practically unsuitable. Thus, TN-film matrices are relatively rare nowadays, mainly among low-cost laptops; more advanced devices are equipped with better screens, most often IPS.

— IPS (In-Plane Switching). The most popular type of matrix for laptops in the middle and top price range; however, it is increasingly common in low-cost models, and for trans...formers and 2-in-1 devices (see "Type") it is almost a standard option. Screens of this type are noticeably superior to TN-film in terms of the quality of the “picture”: they provide a bright, reliable and rich image that hardly changes when the viewing angle changes. In addition, this technology allows to achieve extensive colour gamuts in various special standards (see below) and is suitable for creating displays with advanced features such as HDR support or Pantone / CalMAN certification (also see below). Initially, IPS matrices were expensive and had a slow response time; however, nowadays, various modifications of this technology are used, in which these shortcomings are fully or partially compensated. At the same time, different modifications may differ in practical characteristics: for example, some are created based on the maximum reliability of the picture, others differ in affordable cost, etc. So it's ok to clarify the actual characteristics of the IPS screen before buying — especially if you plan to use a laptop for specific applications where image quality is critical.

— *V.A. Various modifications of matrices of the "Vertical Alignment" type: MVA, PVA, Super PVA, ASVA, etc. The differences between these technologies are mainly in the name and the manufacturer. Initially, matrices of this type were developed as a compromise between IPS (high-quality, but expensive and slow) and TN-film (fast, inexpensive, but modest in image quality). As a result, *VA screens turned out to be more affordable than IPS and more advanced than TN-film — they have good colour reproduction, deep blacks and wide viewing angles. At the same time, it is worth noting that the colour balance of the picture on such a display changes somewhat when the viewing angle changes. This makes it difficult to use *VA matrices in professional colour work. In general, this option is designed mainly for those who do not need perfect colour accuracy and at the same time want to see a bright and colorful image.

— OLED. Matrices based on the so-called organic light-emitting diodes. The key feature of such displays is that in them each pixel is a source of light in itself (unlike classic LCD screens, in which the backlight is made separately). This design principle, combined with a number of other solutions, provides excellent brightness, contrast and colour reproduction, rich blacks, the widest possible viewing angles and a small thickness of the screens themselves. On the other hand, laptop OLED matrices for the most part turn out to be quite expensive and “gluttonous” in terms of energy consumption, and they wear out unevenly: the more often and brighter a pixel glows, the faster it loses its working properties (however, this phenomenon becomes noticeable only after several years of intensive use). In addition, for a number of reasons, such screens are considered poorly suited for gaming applications. In light of all this, sensors of this type are rare these days — mostly in individual high-end laptops designed for professional colour work and with appropriate features such as HDR support, wide colour gamut and/or Pantone / CalMAN certification (see below).

— AMOLED. A kind of matrices on organic light-emitting diodes, created by Samsung (however, it is also used by other manufacturers). In terms of its main features, it is similar to other types of OLED matrices (see above): on the one hand, it allows you to achieve excellent image quality, on the other hand, it is expensive and wears out unevenly. At the same time, AMOLED screens have even more advanced colour performance combined with better power optimization. And the low prevalence of this technology is mainly due to the fact that it was originally created for smartphones and only recently began to be used in laptops (since 2020).

— MiniLED. Screen backlight system on a substrate of miniature LEDs with a size of about 100-200 microns (µm). On the same display plane, it was possible to increase the number of LEDs several times, and their array is placed directly behind the matrix itself. The main advantage of miniLED technology can be called a large number of local dimming zones, which in total gives improved brightness, contrast and more saturated colors with deep blacks. MiniLED screens unlock the potential of High Dynamic Range (HDR) technology, suitable for graphic designers and digital content creators.

— QLED. Matrices on "quantum dots" with a redesigned LED backlight system. In particular, it provides the replacement of multilayer colour filters with a special thin-film coating of nanoparticles. Instead of traditional white LEDs, QLED panels use blue ones. As a result, a set of design innovations makes it possible to achieve a higher brightness threshold, colour saturation, improve the quality of colour reproduction in general, while reducing the thickness of the screen and reducing power consumption. The reverse side of the QLED-matrices coin is an expensive cost.

— PLS. A type of matrix developed as an alternative to the IPS described above and, according to some sources, is one of its modifications. Such matrices are also characterized by high colour rendering quality and good brightness; in addition, the advantages of PLS include good suitability for high-resolution screens (due to high pixel density), as well as lower cost than most IPS modifications, and low power consumption. At the same time, the response speed of such screens is not very high.

— LTPS. An advanced type of TFT-matrix, created on the basis of the so-called. low temperature polycrystalline silicon. Such matrices have high colour quality, and are also well suited for screens with high pixel density — in other words, they can be used to create small displays with very high resolution. Another advantage is that part of the control electronics can be built directly into the matrix, reducing the overall thickness of the screen. On the other hand, LTPS matrices are difficult to manufacture and expensive, and therefore are found mainly in premium laptops.

— IGZO. An LCD technology that uses a semiconductor material based on indium, gallium, and zinc oxides (as opposed to more traditional amorphous silicon). This technology provides fast response time, low power consumption and very high colour quality; it also achieves high pixel densities, making it well-suited for ultra-high resolution screens. However, while such displays in laptops are extremely rare. This is explained both by the high cost and by the fact that rather rare metals are used in the production of IGZO matrices, which makes large-scale production difficult.

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Screen resolution

The resolution of the screen installed in the laptop — that is, the size of the screen in pixels horizontally and vertically.

Higher resolution, on the one hand, gives a sharper, more detailed image; on the other hand, it increases the cost of the laptop. The latter is connected not only with the cost of the displays themselves, but also with the fact that in order to work effectively at high resolutions, you need the appropriate filling (primarily a graphics card). This is especially true in games; so if you are looking for a laptop with a high-resolution screen that can effectively "run" modern games — you should pay attention not only to the characteristics of the display, but also to other data (the type and parameters of the graphics card, test results, the ability to work with certain games — see everything below). On the other hand, if the device is planned to be used for simple tasks such as working with documents, surfing the Internet and watching videos, you can not pay much attention to the “hardware” parameters: anyway, they are selected so that the laptop is guaranteed to be able to cope with such tasks on full resolution of the "native" screen.

As for specific numbers, the resolution options that are relevant today can be divided into 4 groups: HD (720), Full HD (1080), Quad HD and UltraHD 4K. Here is a mor...e detailed description of them:

— HD (720). This category includes all displays that have a vertical size of less than 1080 pixels. The most popular HD resolution in modern laptops is 1366x768; in devices larger than 15.6 ", 1600x900 is also often found. Other values quite exotic and are rarely used. In general, screens of this standard are now typical mainly for entry-level laptops.

— Full HD (1080). Initially, the Full HD standard provides a frame size of 1920x1080, and it is this resolution that is most often used in laptop screens from this category. However, in addition to this, other resolution options are also included in this format, where the vertical size is at least 1080 pixels, but does not reach 1440 pixels. Examples include 1920x1200 and 2560x1080. In general, Full HD displays provide a good balance between cost, image quality and laptop hardware requirements. Because of this, nowadays they are extremely widespread; matrices of this standard can be found even in low-cost devices, although they are mainly used in more advanced technology.

— Quad HD. A transitional option between the popular Full HD 1080 (see above) and the high-end and expensive UltraHD 4K. The vertical size of such screens starts from 1440 pixels and can reach 2000 pixels. Note that QuadHD resolutions are especially popular in Apple laptops; most often, such devices have 2560x1600 screens, although there are other options.

— Ultra HD 4K. The most advanced standard used in modern laptops. The vertical size of such screens is at least 2160 dots (up to 2400 in some configurations); the classic resolution of a modern UltraHD matrix is 3840x2160, but there are other values. Anyway, a 4K display allows for high image quality, however, it costs accordingly — including due to the corresponding requirements for a graphics adapter; in addition, to work with high resolutions, it can be more convenient to connect an external monitor to the laptop. Thus, such screens are used relatively rarely, and mainly among premium laptops.

Refresh rate

The frame rate supported by the laptop screen. In fact, in this case we are talking about the maximum frequency; the actual frame rate may be lower than this value, depending on the content being displayed — but not higher.

Theoretically, the higher the frame rate, the smoother the movement on the screen will look, the less moving objects will be blurred. In fact, the situation is such that even in relatively modest modern laptops, 60 Hz matrices are installed — in general, this is quite enough for the human eye, since a further increase in speed ( 90 Hz and higher) does not significantly improve the visible “picture”. However, in high-end gaming and multimedia models designed for demanding users, higher values — 120 Hz, 144 Hz, 165 Hz and even higher, namely 240 Hz and 300 Hz.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Pantone certification

This feature means that the laptop screen has received the Pantone Validated certification.

Pantone is a professional colour system created by the company of the same name and widely used in design and printing. One of Pantone's basic ideas is that each colour should remain the same at all stages of work — from agreeing on a general idea to printing / releasing the final product; To do this, all shades covered by the system are assigned code names, which are used in the work. In the case of laptops, Pantone certification means that when working with materials and software tools that use a given colour scheme, the colours on the screen will match the actual Pantone hues as closely as possible.

We emphasize that there is no question of perfect correspondence (LCD matrices are not physically capable of adequately displaying some shades); in addition, screens with such certification may have different colour gamuts — both in percentages and in the systems used for designation (sRGB, Adobe RGB, DCI P3 — see above). However, even if the colour is beyond the capabilities of the screen, it will be displayed as accurately as possible. Therefore, for professional tasks associated with intensive use of Pantone, it is worth choosing monitors with official certification; An example of such tasks is the printing of image printing.
Lenovo Legion Pro 7 16IRX8 often compared
Apple MacBook Pro 14 (2023) M3 often compared