USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Viessmann Vitodens 050-W BPJC035 24kW 24 kW
230 V
vs Viessmann Vitopend 100-W A1JB 24 kW 24 kW

Add to comparison
Viessmann Vitodens 050-W BPJC035 24kW 24 kW 230 V
Viessmann Vitopend 100-W A1JB 24 kW 24 kW
Viessmann Vitodens 050-W BPJC035 24kW 24 kW
230 V
Viessmann Vitopend 100-W A1JB 24 kW 24 kW
Outdated ProductOutdated Product
User reviews
0
1
0
3
TOP sellers
Main
This model has a low noise level, at full power the sound pressure level does not exceed 45 dB.
DHW capacity at Δt=30° – 11.2 L/min. Resistant to mains voltage fluctuations. Built-in weekly timer. Ability to work with liquefied gas.
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area216 m²192 m²
Condensing
Technical specs
Heat output24 kW24 kW
Min. heat output6.5 kW
Power supply230 V230 V
Power consumption72 W120 W
Coolant min. T40 °С
Coolant max. T80 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure10 bar10 bar
Consumer specs
DHW min. T35 °С
DHW max. T57 °С
Performance (ΔT=25°C)13.6 L/min
"Summer" mode
Circulation pump
Control busOpenTherm
Programmable thermostat
Boiler specs
Efficiency108.4 %91 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100 mm60/100 mm
Max. gas consumption2.37 m³/h2.77 m³/h
Expansion vessel capacity8 L6 L
Expansion vessel pressure1 bar
Heat exchangerstainless steel
Connections
Mains water intake1/2"
DHW flow1/2"
Gas supply3/4"
Central heating flow3/4"
Central heating return3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
power outage
water circulation failure
gas pressure drop
water overheating
flame loss
draft control
 
 
More specs
Dimensions (HxWxD)707x400x350 mm725x400x340 mm
Weight35 kg32 kg
Added to E-Catalogseptember 2019august 2017

Heating area

The maximum area of the building that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and even more so 50-year-old houses. Accordingly, this paragraph is more of a reference nature and does not allow a full assessment of the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; see Heat output for more details. In our case, the heating area is calculated according to the formula "boiler power multiplied by 8", which is approximately equivalent to use in houses that are more than a dozen years old.

Condensing

Boilers generate additional heat by condensing water vapour from combustion products. In such units, the combustion gases, before entering the flue, are passed through an additional heat exchanger, in which they are cooled, and the water vapour condenses and transfers thermal energy to the coolant. It allows you to increase the efficiency by 10 – 15% compared to boilers of the classical design — up to the fact that in many similar models, the efficiency exceeds 100% (for more details, see "Efficiency").

The condensation principle of operation is most often found in gas models (see "Power source"); however, solid and liquid fuel boilers with this feature are also produced.

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

DHW min. T

The minimum temperature of domestic hot water (DHW) supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). At the same time, in some boilers, the minimum heating temperature can be only 10 °C or even 5 °C. A similar mode of operation is used to protect pipes from freezing during the cold season: the circulation of water with a positive temperature prevents the formation of ice inside and damage to the circuits.

It is also worth keeping in mind that when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

DHW max. T

The maximum temperature of domestic hot water supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). Accordingly, even in the most modest models, this figure is about 45 °C, in the vast majority of modern boilers, it is not lower than 50 °C, and in some models, it can even exceed 90 °C.

Also when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

Performance (ΔT=25°C)

The performance of a dual-circuit boiler in the DHW supply mode when the water is heated by 25 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain options ΔT — namely 25 °C, 30 °C and/or 50 °C. And it’s worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the ΔT=25 °C mode and produce at least warm water at 40 °C, the initial temperature of cold water must be at least 15 °C (15+25=40 °C). It is a rather high value — for example, in a centralized water supply system, cold water...reaches 15 °C, except in summer, when the water pipes warm up noticeably; the same applies to water supplied from wells. So this performance is a very conditional value. The boiler does not work so often with a temperature difference of 25 °C. Nevertheless, the data for ΔT=25°C is still often given in the specifications — including for advertising purposes since it is in this mode that the performance figures are the highest. In addition, this information may be useful if the boiler is used as a pre-heater, and heating to operating temperature is provided by another device, such as an electric boiler or instantaneous water heater.
Viessmann Vitodens 050-W BPJC035 24kW often compared
Viessmann Vitopend 100-W A1JB 24 kW often compared