Dark mode
USA
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   NVDs and Thermal Imagers

Comparison Hikmicro Thunder Pro TE19C vs Hikmicro Lynx Pro LH25

Add to comparison
Hikmicro Thunder Pro TE19C
Hikmicro Lynx Pro LH25
Hikmicro Thunder Pro TE19CHikmicro Lynx Pro LH25
from $1,225.65
Outdated Product
from $1,673.28
Outdated Product
TOP sellers
Main
Availability of Wi-Fi and wireless image transmission. Charging via USB.
Check with the store manager for the availability of a rifle mount.
Built-in Wi-Fi module allows you to display the image on the smartphone display
Typethermal imagerthermal imager
Form factorattachmentmonocular
Detection range950 m1180 m
Optical specs
Optical magnification1 x19.6 x
Digital magnification8 x8 x
Lens diameter19 mm
Focal length25 mm
Receiver resolution256x192 px384x288 px
Refresh rate25 Hz50 Hz
Angular field of view9.24 °10.5 °
Min. focus distance5 m
Exit pupil diameter22 mm
Offset of the exit pupil10 mm
Diopter adjustment
More features
More features
video output
built-in video recorder
switching monitoring modes
dust-, waterproof
shockproof
video output
built-in video recorder
switching monitoring modes
dust-, waterproof
 
General
Power source2xCR123Abattery
Continuous operating time4.5 h7.5 h
Operating temperature range-20 °C ~ +55 °С-20 °C ~ +55 °С
Dimensions153.2x62.5x59.2 mm171x61x57 mm
Weight420 g300 g
Added to E-Catalogapril 2022march 2023

Form factor

Binoculars. In its classic form, binoculars require a pair of optical systems, each with its own lens and eyepiece. Thanks to this, you can view objects with both eyes at once, which is quite convenient in itself (you don’t have to close your eyes), and the image looks three-dimensional. The main disadvantage of traditional binoculars compared to monoculars is their higher cost due to their more complex design. Also, such devices are larger, heavier, and if it is impossible to see normally with both eyes at once (for example, with strabismus, or if one eye is missing), all their advantages become irrelevant. At the same time, there is a specific variety - “pseudo-binoculars”: these are night vision devices with one lens, the image from which is sent to two eyepieces. In this case, there is no question of a three-dimensional image, which is why the use of such devices is more limited (in particular, they are considered poorly suitable for driving); but the designs are simpler, lighter and cheaper.

Monocular. Optical instruments designed for one eye and equipped, respectively, with one optical system with an eyepiece and a lens. They are not as convenient as binoculars because they do not allow for a three-dimensional image and require one eye to be closed. On the other hand, monoculars are much more versatile. Thus, with a slight magnification of such a device, you can observe the situation wit...h both eyes at once, receiving an image from both the NVD and the naked eye; some monoculars can be mounted on weapons, turning a regular sight into a night sight; Another option is to install the device on a helmet and sight through it; and so on. However, the most important advantages over binoculars are compactness, low weight and low cost; In addition, monoculars are suitable even for people with binocular vision disorders.

Sight. Devices designed for installation on weapons and equipped with appropriate mounts, as well as an aiming reticle of one type or another and a reinforced housing that can withstand recoil. They can be both NVGs and thermal imagers (see “Type”). In fact, such devices are an improved type of optical sights, designed for use in the dark, and in the case of thermal imagers, also in poor visibility conditions (fog, dense vegetation). And some models provide quite advanced functions that make accurate shooting much easier: rangefinder, barometer, compass, ballistic calculator, etc.

- Nozzle. Strictly speaking, this type of optical device is not a night vision device - the attachments themselves do not provide visibility in the dark. In fact, they are additional accessories, the installation of which allows you to expand the capabilities of a full-fledged night vision device. Most attachments play the role of magnetizers - i.e. increase the magnification factor. Such devices are created for specific NVD models, and even from the same manufacturer, not all attachments and devices are mutually compatible; Therefore, you should pay special attention to these points when purchasing.

Detection range

The greatest distance at which a night vision device is capable of detecting individual objects.

The methods by which manufacturers determine this parameter may vary in detail, but the general principle is the same. Usually, the distance is indicated at which, with an illumination of 0.05 lux (a quarter of the moon) and a medium-contrast background, a rather large object can be seen — for example, a human figure with a height of about 170 cm is most often taken. of this object, but only to notice the very fact of its presence. Simply put, a detection range of, say, 200 m means that “something that looks like a person” can be seen in such a device at a distance of 200 m, but individual parts (head, hands) cannot be disassembled.

It is also worth noting that in fact this parameter is highly dependent on the characteristics of the situation. For example, a dark object on a very light background will be visible further, and on a dark one it may not be noticeable even up close; a similar phenomenon is observed for thermal imagers (see "Type"), only regarding the difference in temperature, and not in colours.

Optical magnification

The degree of image magnification that a night vision device is able to provide without digital image processing, solely due to the optical system. Such an increase is considered to be preferable to digital, because. it does not impair the clarity of the visible image; and for models based on image intensifier tubes (see "How it works"), this is generally the only available option.

Theoretically, the higher the magnification, the greater the detection range (see above), since a powerful increase allows you to see smaller objects. However, it does not always make sense to chase the maximum performance. The fact is that with increasing magnification, the angular field of view decreases and the minimum focus distance increases (see both below), which can create problems at close range. It is also worth noting that a high degree of magnification adversely affects the luminosity of the entire system — as a result, the actual detection range in complete darkness may be higher for a device with a lower magnification, because. it "catches" more light. Yes, and this parameter affects the cost accordingly.

Note that night vision devices, unlike classical binoculars and monoculars, most often have a fixed magnification. Models with the possibility of smooth adjustment are almost never found, and the only option is to use additional nozzles (see "Form factor").

Now on the market are night vision devices with the following optical zoom: 1x, 2 – 3x, 3.1 – 4x, > 4x

Lens diameter

The diameter of the entrance lens that the lens of the night vision device is equipped with.

This parameter is one of the most important for any optical device, including night vision devices: the larger the lens, the more light (or infrared radiation) enters it and the more sensitive the optics are, all other things being equal. The downside of this is an increase in the size, weight and cost of the device. In addition, do not forget that various tricks and additional technologies can be used in the design; therefore, by itself, a large lens is far from always an unambiguous indicator of a high class.

Focal length

The focal length of a night vision device. This term means such a distance from the optical centre of the lens to the photocathode of the image intensifier tube or the matrix of a digital device(see "Operation principle"), at which a clear image is obtained on the photocathode/matrix.

In general, long focal lengths are characteristic of optical systems with a high degree of optical magnification (see above). However, in the case of night vision devices, this dependence is not rigid — it is simply easier to ensure a high magnification with long-focus optics. In fact, this means that models with the same focal length can differ markedly in magnification. But what this indicator directly affects is light transmission: other things being equal, longer optical systems transmit less light, which negatively affects the capabilities of the device. This is also true for thermal imagers (see "Type"), because their working infrared range in this case also obeys the general laws of optics.

Receiver resolution

The resolution of the matrix installed in the thermal imager (see "Type") or digital night vision device (see "Operating principle"). Usually specified in pixels horizontally and vertically, for example 640x480.

On the one hand, the higher the resolution, the clearer and more detailed the image will be. On the other hand, increasing the resolution without changing the matrix size means that less light will fall on each pixel, which negatively affects the detection range (see above) and leads to the appearance of noise. Therefore, the resolution of receivers in modern NVDs is small - in terms of conventional megapixels, it rarely exceeds 0.3 MP. And it hardly makes sense to compare different models by this parameter, because the actual quality of work also largely depends on the size of the receiver, the features of signal processing, etc.

Refresh rate

The frame rate on the screen of the thermal imager (more precisely, on the display visible to the shooter through the eyepiece). The higher this frequency — the smoother and less jerky the image is, the better the thermal imager is suitable for looking at fast moving objects. On the other hand, this indicator directly affects the price of the device and reduces its battery life, because. a high frame rate requires a powerful (and therefore expensive and high consumption) electronic hardware.

Angular field of view

The angle of view provided by a night vision device — that is, the angle between the lines connecting the observer's eye with the two extreme points of visible space. Wide viewing angles allow you to cover a large area, but the magnification factor (see above) is low; in turn, increasing the magnification leads to a decrease in the field of view.

Min. focus distance

The smallest distance to the observed object, at which it will be clearly visible through the night vision device. For normal use of night vision devices, it is necessary that this distance does not exceed the minimum expected distance to the objects in question; thus, it must be borne in mind that the higher the magnification factor (see above), the greater the focus distance, usually.