USA
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison Keenetic Titan KN-1811 vs Keenetic Peak KN-2710

Add to comparison
Keenetic Titan KN-1811
Keenetic Peak KN-2710
Keenetic Titan KN-1811Keenetic Peak KN-2710
Outdated ProductOutdated Product
TOP sellers
Product typerouterrouter
Data input (WAN-port)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
 
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
SFP (optics)
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 6 (802.11ax)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
 
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesdual band (2.4 GHz and 5 GHz)dual band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz800 Mbps800 Mbps
Wireless speed 5 GHz2402 Mbps1733 Mbps
Bandwidth160 MHz
Connection and LAN
WAN
 
 
1 port /combined 1xRJ45/1xSFP/
1 Gbps
LAN
6 ports
1 Gbps, 2.5 Gbps /5x1 Gbit/s, 1x2.5 Gbit/s/
8 ports
1 Gbps
Reassignable WAN / LAN5 ports9 ports
USB 2.011
USB 3.2 gen111
Antenna and transmitter
Number of antennas44
Antenna typeexternalexternal
MU-MIMO
Detachable antenna
Gain5 dBi5 dBi
Hardware
CPUMediaTek MT7622BMediaTek MT7622B
CPU cores22
Clock Speed1.35 GHz1.35 GHz
RAM
512 MB /DDR3/
512 MB
Flash memory256 MB256 MB
Functions
Features
 
Link Aggregation
NAT
 
 
MESH mode
Beamforming
firewall
CLI (Telnet)
channel reservation
 
NAT
bridge mode /WISP/
repeater
MESH mode
Beamforming
firewall
CLI (Telnet)
More features
DHCP server
FTP server
file server
media server (DLNA)
print server
torrent client
VPN
DDNS
DMZ
DHCP server
FTP server
file server
media server (DLNA)
print server
torrent client /Transmission/
VPN
DDNS
DMZ
Security
Safety standards
WPA
WEP
WPA2
WPA3
802.1x
WPA
WEP
WPA2
WPA3
802.1x
General
Operating temperature0 °C ~ +40 °C0 °C ~ +40 °C
Dimensions214x154x33 mm253x204x51 mm
Weight500 g655 g
Color
Added to E-Catalogmay 2023july 2021

Data input (WAN-port)

Methods for connecting to the Internet (or other external network, such as in bridge mode) supported by the device.

The classic, most common version of such a connection nowadays is LAN (Ethernet), but this is not limited to this. A wired connection can also be made via ADSL or SFP fiber, and wirelessly via mobile networks (using a SIM card, SIM card 5G or an external modem for 3G or 4G), as well as via Wi-Fi. Here is a more detailed description of each option:

— Ethernet (RJ45). Classic wired connection via a network cable via an RJ-45 connector. Also known as "LAN", although this designation is not entirely correct. Nowadays, it is one of the most common methods of wired Internet connection, and is also widely used in local networks. This is due to the fact that the speed of Ethernet is actually limited only by the capabilities of network controllers; at the same time, even the simplest modules support up to 100 Mbps, and in advanced equipment this value can reach 10 Gbps.

— ADSL. A technology primarily used for wired Internet connections over existing landline telephone lines. This is its main advantage — you can use ready-made lines without fiddling with laying numerous addi...tional wires; at the same time, ADSL works independently of telephone calls and does not interfere with them. At the same time, the speed of such a connection is noticeably lower than via Ethernet — even in advanced equipment it does not exceed 24 Mbps. In addition, ADSL traffic is distributed asymmetrically: full speed is achieved only when working for reception, data transmission speed is much lower, which creates problems for video communication and some other tasks. So nowadays, ADSL is gradually being replaced by more advanced standards, although the complete disappearance of this technology is still far away.

— Wi-Fi. Connect to an external data source via Wi-Fi. By definition, this format of operation is used by Wi-Fi adapters (see "Device type"), as well as by most MESH equipment. (However, if the MESH system package includes both nodes and the main control device for them, then the WAN input can be specified for the control device, and often this is not Wi-Fi). Also, this type of data input can be provided in other types of equipment — in particular, routers and access points (for example, to work in bridge or repeater mode).

— 3G modem (USB). Internet connection via 3G mobile network using a separate external modem connected to the USB port. Most often, we are talking about UMTS networks (the development of GSM mobile communications), the most common in Europe and the post-Soviet space; however, it may also be possible to use modems for CDMA networks (EV-DO technology). These nuances, as well as compatibility with specific modem models, need to be clarified separately. However, anyway, 3G may be a good option for situations where a wired Internet connection is difficult or impossible, such as in the private sector. In addition, some Wi-Fi devices with this feature are equipped with autonomous power supplies and can even be used on the go. The data transfer speed of 3G is close to broadband wired connection (from 2 to 70 Mbps with a normal signal, depending on the specific technology); however, it is less than in 4G networks (see below), but 3G coverage is more extensive, and equipment for this standard is cheaper.

— 4G (LTE) modem (USB). Internet connection via 4G mobile network (LTE) using a separate external modem connected to the USB port. The main features are similar to the 3G connection described above, adjusted for the fact that in this case more advanced fourth-generation networks are used. The data transfer rate in such networks reaches about 150 Mbps; they are not as widespread as 3G-connection, but soon we can expect a change in the situation. In addition, it should be noted that in Europe and the post-Soviet space, LTE networks are usually deployed on the basis of 3G UMTS and GSM networks; so in the absence of full-fledged 4G coverage, modems for such networks can work according to the 3G and even GSM standard.

— SIM card. Connecting to the Internet via a mobile network using a mobile operator's SIM card installed directly in the device. The specific type of supported networks depends both on the capabilities of the router and on the conditions of a particular mobile operator; however, all such equipment is compatible with at least 3G networks, and often 4G as well. The features of these networks are described in detail above (you can also read about the advantages of a mobile Internet connection there). This option is convenient because it allows you to do without a separate USB modem — you just need to purchase a SIM card, the cost of which is negligible. In addition, the use of "sim cards" has a positive effect on compactness and ease of carrying. On the other hand, the built-in mobile communication module significantly affects the overall cost — and you will have to pay for it anyway (whereas a model with support for external modems does not have to be bought immediately with a modem, such devices usually allow wired connection). Therefore, you should pay attention to this option if you initially plan to connect to the Internet through mobile networks.

- SIM card (5G). The ability to operate Wi-Fi equipment in high-speed 5G mobile networks with a peak bandwidth of up to 20 Gbps for reception and up to 10 Gbps for data transmission. Implemented via a SIM card with appropriate 5G support. This standard reduces power consumption compared to previous versions, and it also uses a number of complex solutions aimed at improving the reliability and overall quality of communication - in particular, multi-element antenna arrays (Massive MIMO) and beamforming technologies (Beamforming).

— SFP (optics). Connection via fiber optic cable of the SFP standard. Such a connection can be carried out at high speeds (measured in gigabytes per second), and the fiber, unlike the Ethernet cable, is practically insensitive to external interference. On the other hand, the support of this standard is not cheap, and its capabilities are unnecessary for domestic use. Therefore, SFP is found mainly in professional-level Wi-Fi devices.

Wi-Fi standards

Wi-Fi standards supported by the equipment. Nowadays, in addition to modern standards Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax)(its variation Wi-Fi 6E), Wi-Fi 7 (802.11be) and WiGig (802.11ad), you can meet also support for earlier versions — Wi-Fi 3 (802.11g) and even Wi-Fi 1 (802.11b). Here is a more detailed description of each of these versions:

— Wi-Fi 3 (802.11g). An outdated standard, like Wi-Fi 1 (802.11b), which has sunk into oblivion. It was widely used before the advent of Wi-Fi 4, nowadays it is used mainly as an addition to newer versions — in particular, in order to ensure compatibility with outdated and low-cost equipment. Operates at a frequency of 2.4 GHz, the maximum data transfer rate is 54 Mbps.

— Wi-Fi 4 (802.11n). The first of the common standards that supports the frequency of 5 GHz; can operate in this range or in the classic 2.4 GHz. It is worth emphasizing that some models of Wi-Fi equipment for this standard use only 5 GHz, which is why they are incompatible with earlier versions of Wi-Fi. The maximum speed for Wi-Fi 4 is 600 Mbps; in modern wireless devices, this standard is very popular, only recently it began to be squeezed into this position by Wi-Fi 5.

— Wi-Fi 5...(802.11ac). The successor to Wi-Fi 4, which finally moved to the 5 GHz band, which had a positive effect on the reliability of the connection and data transfer rate: it is up to 1.69 Gbps per antenna and up to 6.77 Gbps in general. In addition, this is the first version to fully implement Beamforming technology (for more details, see "Functions and Capabilities").

— Wi-Fi 6, Wi-Fi 6E (802.11ax). The development of Wi-Fi 5, which introduced both an increase in speed to 10 Gbps, and a number of important improvements in the format of work. One of the most important innovations is the use of an extensive frequency range — from 1 to 7 GHz; this, in particular, allows you to automatically select the least loaded frequency band, which has a positive effect on the speed and reliability of the connection. At the same time, Wi-Fi 6 devices are capable of operating at classic frequencies of 2.4 GHz and 5 GHz, and a modification of the Wi-Fi 6E standard is capable of operating at frequencies from 5.9 to 7 GHz, it is generally accepted that devices with Wi-Fi 6E support operate on frequency of 6 GHz, while there is full compatibility with earlier standards. In addition, some improvements were introduced in this version regarding the simultaneous operation of several devices on one channel, in particular, we are talking about OFDMA technology. Thanks to this, Wi-Fi 6 gives the smallest of modern standards a drop in speed when the air is loaded, and the modification of Wi-Fi 6E operating at a frequency of 6 GHz has the least amount of interference.

— Wi-Fi 7 (802.11be). This Wi-Fi standard began to be implemented in 2023. Thanks to the use of 4096-QAM modulation, a maximum theoretical data rate of up to 46 Gb / s can be squeezed out of it. Wi-Fi 7 supports three frequency bands: 2.4 GHz, 5 GHz and 6 GHz. The maximum bandwidth in the standard has been increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit overnight. Among the interesting innovations in Wi-Fi 7, the development of MLO (Multi-Link Operation) is noted - with its help, connected devices exchange data using several channels and frequency bands simultaneously, which is especially important for VR and online games. The Multiple Resource Unit technology is designed to minimize communication delays when there are many connected client devices. The new 16x16 MIMO protocol is also aimed at increasing throughput with a large number of simultaneous connections, doubling the number of spatial streams compared to the previous Wi-Fi 6 standard.

WiGig (802.11ad). Wi-Fi standard using an operating frequency of 60 GHz; data transfer rates can be up to 10 Gbps (depending on the specific version of WiGig). The 60 GHz channel is much less loaded than the more popular 2.4 GHz and 5 GHz, which has a positive effect on the reliability of data transmission and reduces latency; the latter is especially important in games and some other special tasks. On the other hand, the increase in frequency has significantly reduced the connection range (for more details, see "Frequency range"), so that in fact this standard is only suitable for communication within the same room.

Note that in fact, the data transfer rate is usually much lower than the theoretical maximum — especially when several Wi-Fi devices operate on the same channel. Also note that different standards are backwards compatible with each other (with a speed limit according to the slower one) provided that the frequencies match: for example, 802.11ac can work with 802.11n, but not with 802.11g.

Wireless speed 5 GHz

The maximum speed supported by the device when communicating wirelessly in the 5 GHz band.

This range is used in Wi-Fi 4, Wi-Fi 6 and Wi-Fi 6E as one of the available bands, in Wi-Fi 5 as the only one (see "Wi-Fi Standards"). The maximum speed is specified in the specifications in order to indicate the real capabilities of specific equipment - they can be noticeably more modest than the general capabilities of the standard. Also, in fact, it all depends on the generation of Wi-Fi. For example, devices with Wi-Fi 5 support can theoretically deliver up to 6928 Mbit (using eight antennas), with Wi-Fi 6 support up to 9607 Mbit (using the same eight spatial streams). The maximum possible communication speed is achieved under certain conditions, and not every model of Wi-Fi equipment fully satisfies them. Specific figures are conditionally divided into several groups: the value up to 500 Mbit is rather modest, many devices support speeds in the range of 500 - 1000 Mbit, indicators of 1 - 2 Gbps can be attributed to the average, and the most advanced models in class provide a data exchange rate of over 2 Gbps.

Bandwidth

- 160 MHz. The presence of a bandwidth of 160 MHz increases the throughput for data transmission and allows it to approach the maximum theoretical speed.

- 320 MHz. The bandwidth of 320 MHz was introduced in the Wi-Fi 7 standard (see the corresponding paragraph). It provides a significant increase in the speed of data exchange - twice as much compared to the width of the wireless channel of 160 MHz.

WAN

The WAN port characterizes the ability of the device to receive a wired signal. There may be models with both one port and two WAN ports, and in rare cases, more connected providers. Such an expanded number of WAN connectors affects the cost and, accordingly, is found in more part among professional-level routers.

In terms of speed, when choosing a device, the priority is the speed of the output LAN port or Wi-Fi. However, faster WAN ports ( 1 Gbps, 2.5 Gbps, 5 Gbps, 10 Gbps) allow you to divide the load on several outputs at once without reducing speed performance, as may be the case with WAN port 100 Mbps.

LAN

In this case, LAN means standard network connectors (known as RJ-45) designed for wired connection of LAN devices — PCs, servers, additional access points, etc. The number of ports corresponds to the number of devices that can be directly connected to wired equipment. way.

In terms of speed, 100 Mbps (Fast Ethernet) and 1 Gbps (Gigabit Ethernet) are the most popular options today. At the same time, thanks to the development of technology, more and more gigabit devices are being produced, although in fact this speed is critical only when transferring large amounts of information. At the same time, some models, in addition to the standard speed of the main LAN ports, may have a 2.5 Gbps, 5 Gbps and even 10 Gbps LAN port with increased bandwidth.

Reassignable WAN / LAN

Reassignable WAN / LAN port in the design of the device, which can work both with an external WAN network and with a local LAN. This solution allows you to reduce the total number of connection ports and at the same time expand the functionality of the equipment for flexible adaptation to user needs.

Detachable antenna

The presence of a removable antenna(or several antennas) in the design of the device.

Only external antennas can be made removable (see "Type of antennas"). This design is especially convenient for storage and transportation: it allows you to remove external equipment, making the device less bulky. In addition, many devices with this feature allow replacement of standard antennas with others (for example, more powerful ones or with a more optimal radiation pattern). Some of these models are even initially sold without antennas — in the expectation that the user will choose them himself, at his discretion; such equipment is not needed for domestic use, but it can be very convenient when selecting high-quality professional equipment. On the other hand, the detachable design reduces the reliability of the antenna mounting, increases the possibility of failures at the connection point, and increases the cost of the device. Therefore, most modern Wi-Fi equipment is still equipped with fixed antennas.

Features

The main functions and capabilities implemented in the device.

This category mainly includes the most key functions — namely load balancing (Dual WAN), channel reservation, Link Aggregation, Bluetooth(various versions, including Bluetooth v 5), voice assistant, NAT, MESH modes, bridge, repeater, Beamforming function , firewall (Firewall) and CLI (Telnet). Here is a more detailed description of each of these items:

— Dual WAN. Possibility of simultaneous connection to two external networks. Most often used for simultaneous work with two Internet connections (although other options are possible); at the same time, there are two main modes of operation with such connections — redundancy (Failover / Failback) and balancing (Load Balance). So, in backup mode, the device constantly uses the main channel to connect to the Internet, and in case of failures on this channel, it automatically switches to a fallback option. In balancing mode, both channels are used simultaneously, while the load between them is distributed either automatically (depending on the traff...ic consumption of a particular device) or manually (clearly specified in the settings for specific devices). This allows, for example, to separate the channel for online games from the rest of the connection, minimizing lags and increasing efficiency.

— Link Aggregation. A function that allows you to combine several parallel physical communication channels into one logical one — to increase the speed and reliability of the connection. Simply put, with Link Aggregation, a device can be connected to another device not with one cable, but with two or even more at once. The increase in speed in this case occurs due to the summation of the throughput of all physical channels; however, the total speed may be less than the sum of the speeds — on the other hand, combining several relatively slow connectors is often cheaper than using equipment with a more advanced single interface. And the increase in reliability is carried out, firstly, by distributing the total load over individual physical channels, and secondly, by means of "hot" redundancy: the failure of one port or cable can reduce the speed, but does not lead to a complete disconnection, and when the channel is restored, the channel is switched on automatically.

— Bluetooth. The device supports Bluetooth wireless technology. The meaning of this function will depend on the format of the equipment operation (see "Device type"). For example, adapters with this capability allow you to supplement your PC not only with Wi-Fi, but also with Bluetooth support — thanks to this, you can get by with one adapter instead of two. And in routers and access points, this feature allows external devices to access the Internet (or local area network) over a Bluetooth connection instead of Wi-Fi. This format of work allows you to unload the Wi-Fi channel and reduce the power consumption of connected devices; this is especially important for smart home components and other IoT devices, some routers/access points expressly state that Bluetooth is intended mainly for such electronics. Other ways of using this technology, more specific, may be envisaged; however, this is rare.

— Voice assistant. Device support for a particular voice assistant. The most common options are (individually or together):
  • Amazon Alexa
  • Google Assistant
The specific functionality of these assistants can be clarified from special sources (especially since it is constantly being optimized and expanded). Here we note that in the case of Wi-Fi equipment, we are usually not talking about an assistant built into the device itself, but about improved compatibility with smartphones and other gadgets that have the corresponding assistant installed. Such functionality can be especially useful given that modern voice assistants are also used to control smart home components. Communication with such control is often carried out just through a home router or other similar equipment, and the support of such equipment for voice assistants greatly simplifies setup and expands the capabilities of the entire system.

— NAT (Network Address Translation). A function that allows Wi-Fi equipment, when working with an external network (for example, the Internet), to replace the IP addresses of all computers and other devices connected to this equipment with one common IP address. In other words, a network with such a router is seen "from the outside" as one device, with one common IP. The most popular use of NAT is to connect several subscribers to the Internet (for example, all computers and gadgets within a home or office) through one provider account. At the same time, the number of such subscribers within the network is limited only by the capabilities of the router and can be freely changed; this will not affect access to the World Wide Web (whereas without using NAT, one would have to organize a separate account for each device). NAT support is a mandatory feature for routers (see "Device type").

— Bridge mode. Possibility of operation of the equipment in the bridge mode. This mode allows you to wirelessly connect individual network segments to each other — for example, to combine two floors if it is difficult to lay a cable between them. However, communication over longer distances is also possible — in some directional access points (see "Device type"), created mainly for just such an application, the range can exceed 20 km. Actually, this mode supports most access points (both directional and conventional), but it is also popular in other types of equipment, in particular, routers.
Note that to work in bridge mode, it is best to use the same type of device — this guarantees high-quality communication in both directions. It is also worth mentioning that in addition to the two-way point-to-point mode, there is also equipment with support for multi-way bridges (“point-to-multipoint”); the availability of such a possibility should be clarified separately.

— Repeater mode. An operating mode in which the equipment only repeats the Wi-Fi signal from another device, playing the role of a repeater. The main function of this function is to expand Wi-Fi networks, providing access where the main device (for example, a router) does not reach. A classic example of repeaters is Wi-Fi amplifiers (see "Device type"), they have this mode by definition; however, it is also found in other types of Wi-Fi equipment. The exception is MESH systems that have similar specifics, but differ in the format of work. See below for more information about this format, but here we note that networks with repeaters are in many ways inferior to MESH in terms of practical capabilities. Firstly, the signals from the main equipment and from the repeater are seen as separate Wi-Fi networks, and when moving between them, subscriber devices must reconnect; this can happen automatically, but disconnections and network changes still cause inconvenience. Secondly, working through a repeater significantly reduces the speed of Wi-Fi. Thirdly, the repeater operates according to a strictly fixed, pre-established routing scheme. On the other hand, access points with a repeater function are much cheaper than MESH nodes, and the mentioned drawbacks are far from always critical.

— MESH mode. Ability to operate the device as a MESH network node. By definition, all MESH systems have this feature, but it can be provided in other types of equipment. A detailed description of networks of this type is given in the paragraph “Device type — MESH system”. Here we will briefly describe their features and the difference between this mode and the repeater mode (see above), which has a largely similar purpose.
MESH technology allows you to create a single wireless network using many separate nodes (access points) connected to each other via Wi-Fi. In this case, the so-called seamless mode of operation is implemented: the entire network is seen as a single whole, switching between access points, if necessary, occurs automatically, in such cases the connection is not broken and the user does not notice the transition to another network node at all. This is one of the key differences from using repeaters. Another difference is dynamic routing: MESH network nodes automatically determine the optimal signal traversal mode. Due to this, as well as due to some other features of this technology, the presence of "intermediaries" on the signal path practically does not affect the communication speed (unlike the same repeaters). The main disadvantage of equipment with this function can be called a relatively high cost.

— Beamforming. A technology that allows you to amplify the Wi-Fi signal in the direction where the receiving device is located (instead of broadcasting this signal in all directions or in a wide sector, as is the case in normal mode). Narrowing the radiation pattern allows you to send more power towards the receiver, thus increasing the range and communication efficiency; while the position of the receiving device is determined automatically, the user does not need to deal with additional settings. And many models of Wi-Fi equipment are capable of amplifying the signal in several directions at once (usually, several antennas are provided for this). At the same time, subscriber devices do not have to support Beamforming — communication improvement is noticeable even with the one-way use of this technology (although not as obvious as with the two-way one).
Also note that the unified Beamforming standards were officially implemented as part of the Wi-Fi 5 specification. However “beamforming” was also used in earlier versions of Wi-Fi, however, different manufacturers used different methods for implementing Beamforming, incompatible with each other. So these days, this feature is almost never found outside of Wi-Fi 5 compatible equipment.

— Firewall. A feature that allows a Wi-Fi device to control traffic passing through it. In fact, the Firewall is a set of software filters: these filters compare data packets with the specified parameters and decide whether or not to pass traffic. In this case, the processing can be carried out according to two rules: “everything that is not expressly prohibited is allowed”, or vice versa, “everything that is not expressly permitted is prohibited”. The main function of a firewall is to protect the network (or individual network segments) from unauthorized access and various attacks. In addition, this function can be used to control user activity — for example, prohibitions on access to certain Internet sites. Note that a firewall can also be implemented at the level of individual devices, but using it on a router allows you to secure the entire network at once.

CLI (Telnet). Ability to control the device via Telnet protocol. This is one of the protocols used today to remotely control network equipment; while Telnet, unlike another popular HTTP standard, does not have a graphical interface and uses only the command line. Such access is used mainly for service purposes — for debugging and changing settings in other text-based protocols (HTTP on web pages, SMTP and POP3 on mail servers, etc.); Telnet requires specialized knowledge.
Keenetic Titan KN-1811 often compared
Keenetic Peak KN-2710 often compared