USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Welders

Comparison Magnum MIG 240 Dual Puls Synergia LCD vs RED TECHNIC RTMSTF0002

Add to comparison
Magnum MIG 240 Dual Puls Synergia LCD
RED TECHNIC RTMSTF0002
Magnum MIG 240 Dual Puls Synergia LCDRED TECHNIC RTMSTF0002
Outdated ProductOutdated Product
TOP sellers
Typesemi-automatic invertersemi-automatic inverter
Welding type
MMA
MIG/MAG
TIG
SPOT
single-sided
MMA
MIG/MAG
TIG
SPOT
single-sided
Specs
Welding currentDCAD
Input voltage230 V230 V
Power consumption7.4 kVA6.6 kVA
Open circuit voltage56 V
Min. welding current30 А
25 А /MIG-MAG: 30 A; TIG: 15 A/
Max. welding current240 А
230 А /MIG-MAG; TIG: 250 A/
Max. welding current (duty cycle 100%)150 А174 А
Duty cycle60 %60 %
Max. electrode size4 mm5 mm
Minimum wire diameter0.8 mm0.6 mm
Max. wire diameter1.2 mm1 mm
More features
Hot Start
Arc Force
Anti-Stick
VRD
pulse welding
2/4 stroke mode
synergistic control
digital display
transportation wheels
Hot Start with adjustment
Arc Force with adjustment
Anti-Stick
 
pulse welding
2/4 stroke mode
synergistic control
digital display
 
Coil locationinternalinternal
Detachable welding cable (MIG/MAG)removableremovable
General
Protection class (IP)2121
Insulation classF
Electrode holder cable2.15 m
Mass cable2 m
Torch cable3.9 m
Dimensions (HxWxD)380x210x440 mm
Weight16.4 kg9.75 kg
Added to E-Catalogfebruary 2023january 2023

Welding current

The type of current used by the machine directly in the welding process.

Variable. A kind of current that is familiar to many primarily from ordinary household sockets: it has an interchangeable polarity, the “plus” and “minus” on the contacts change places with a high frequency. For example, in a household network, the frequency is 50 Hz, and at the output of inverter devices (see "Type") it can rise to several tens of kilohertz. The main advantage of alternating current is that the concept of “polarity” does not apply to it and it is impossible in principle to confuse it when connected. At the same time, the constant reversal of the current direction increases the amount of welding spatter and reduces the quality of the weld. This shortcoming is partially eliminated in the mentioned inverters, due to high frequency currents, however, the quality of welding with alternating current is still somewhat lower than when using direct current. As a result, this option is most widely used in manual arc welding (see "Type of welding") of ferrous metals, in other cases it is rare or not used at all.

Permanent. A current that has a constant direction — from one pole to another, without changing them (similar to how this happens, for example, when using batteries). Such a current, due to its uniformity, creates much less spatter than alternating current, and provides a better quality of the seam....It is also better suited for stainless steel, non-ferrous metals and some specific applications (eg semi-automatic welding, see Welding type). However, as for batteries, the concept of polarity is relevant for direct current devices: “minus” can be connected both to the electrode (so-called direct polarity) and to the material being welded (respectively, reverse). Each of the options is used for certain materials and types of work, so when using direct current, you also have to pay attention to the correct connection. In addition, the direct current devices themselves are more complicated and expensive due to the need to use rectifiers.

— Variable/constant. Devices capable of using both of the above types of current in operation. They are the most versatile, however, and cost accordingly.

Power consumption

Power consumption of the welding machine, expressed in kilovolt-amperes.

kVA is a unit of power used in welding machines along with the more traditional kilowatts. The physical meaning of both units is the same — current multiplied by voltage; however, they denote different parameters. So, in kilowatts, only a part of the total power consumption is recorded — active power (goes to do work and to losses due to heating of individual parts); according to this indicator it is convenient to calculate the practical capabilities of the device. And kilovolt-amperes denote the total energy consumption — it also takes into account reactive power (it goes to losses in coils and capacitors during the operation of alternating current circuits). This data is useful for calculating the total load on the network or other power source.

The apparent power input in kVA will always be greater than the power in kW. However, some manufacturers go to the trick and indicate full power not at full, but at partial (for example, half) load. This gives the impression of efficiency, but is incorrect from a technical point of view. As for the ratio of energy consumption, the active power in kW is often 20-30% lower than the apparent power in kVA. So, in terms of kilovolt-amperes, it is quite possible to evaluate the performance of the unit.

As for specific values, in the most modest models they do not exceed 3 kVA. An indicator up to 5 kVA is considered low, up to 7 kVA — average, and in the most powerful units, the power consumption can reach 10 kVA or even more.

Open circuit voltage

The voltage supplied by the welding machine to the electrodes. As the name suggests, it is measured without load — i.e. when the electrodes are disconnected and no current flows between them. This is due to the fact that at a high current strength characteristic of electric welding, the actual voltage on the electrodes drops sharply, and this does not make it possible to adequately assess the characteristics of the welding machine.

Depending on the characteristics of the machine (see "Type") and the type of work (see "Type of welding"), different open circuit voltages are used. For example, for welding transformers, this parameter is about 45 – 55 V (although there are higher voltage models), for inverters it can reach 90 V, and for semi-automatic MIG / MAG welding, voltages above 40 V are usually not required. Also, the optimal values \u200b\u200bdepend on type of electrodes used. You can find more detailed information in special sources; here we note that the higher the open-circuit voltage, the easier it is usually to strike the arc and the more stable the discharge itself.

Also note that for devices with the VRD function (see "Advanced"), this parameter indicates the standard voltage, without reduction through VRD.

Min. welding current

The smallest current that the device is able to supply through the electrodes during operation. For different materials, different thicknesses of the parts to be welded and different types of welding itself, the optimal welding current will be different; there are special tables that allow you to determine this value. The general rule is that a high current is far from always useful: it gives a rougher seam; when working with thin materials, it is possible to melt through the junction instead of connecting the parts, not to mention excessive energy consumption. Therefore, if you have to work with parts of small thickness (2-3 mm), before choosing a welding machine, it makes sense to make sure that it is capable of delivering the desired current without “busting”.

Max. welding current

The highest current that the welding machine is capable of delivering through the electrodes during operation. In general, the higher this indicator, the thicker the electrodes the device can use and the greater the thickness of the parts with which it can work. Of course, it does not always make sense to chase high currents — they are more likely to damage thin parts. However, if you have to deal with large-scale work and a large thickness of the materials to be welded, you simply cannot do without a device with the appropriate characteristics. Optimum welding currents depending on materials, type of work (see "Type of welding"), type of electrodes, etc. can be specified in special tables. As for specific values, in the most “weak” models, the maximum current does not even reach 100 A, in the most powerful ones it can exceed 225 A and even 250 A.

Max. welding current (duty cycle 100%)

The highest welding current at which the machine is able to operate with a duty cycle of 100%.

See below for more information on the frequency of inclusion (PV). Here we recall that “100% duty cycle” means continuous operation, without shutdowns for cooling. Thus, the maximum welding current at 100% duty cycle is the highest current at which the machine can be used without interruption. Usually, this current is much lower than the maximum.

Max. electrode size

The largest diameter of the electrode that can be installed in the welding machine. Depending on the thickness of the parts, the material from which they are made, the type of welding (see above), etc. the optimal electrode diameter will be different; there are special tables that allow you to determine this value. Large diameter may be required for thick materials. Accordingly, before purchasing, you should make sure that the selected model will be able to work with all the necessary electrode diameters.

In modern welding machines, an electrode diameter of 1 mm or less is considered very small, 2 mm — small, 3 mm and 4 mm — medium, and powerful performant models use electrodes of 5 mm or more.

Minimum wire diameter

The minimum diameter of the welding wire that the machine can work with.

Wire electrodes are used in semi-automatic models (see "Type"), mainly for MIG/MAG welding (see "Type of welding"). The thinner the electrode, the better it is suitable for delicate work where a small thickness and width of the seam is required. Specific recommendations on the diameter of the wire for a particular task can be found in special sources.

Max. wire diameter

The maximum diameter of the welding wire that the machine can work with.

Wire electrodes are used in semi-automatic models (see "Type"), mainly for MIG/MAG welding (see "Type of welding"). Specific recommendations on the diameter of the wire for a particular task can be found in special sources, but here we note that a large electrode thickness is important for rougher jobs that require a thick seam and a large amount of material. In general, the wire is noticeably thinner than traditional electrodes. The standard option here is considered to be a maximum diameter of 1 mm, smaller values ( 0.8 mm and 0.9 mm) are found mainly in low-power devices for fine work, and 2 mm or more — on the contrary, in advanced performant units.
Magnum MIG 240 Dual Puls Synergia LCD often compared