Dark mode
USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison XGIMI RS Pro 2 vs XGIMI Horizon Pro

Add to comparison
XGIMI RS Pro 2
XGIMI Horizon Pro
XGIMI RS Pro 2XGIMI Horizon Pro
from $2,190.00 
Outdated Product
Compare prices 4
User reviews
0
1
0
0
TOP sellers
Main
Harman/Kardon audio system. Support DTS-HD, DTS Studio Sound, Dolby Digital.
The difference between XGIMI Horizon models and XGIMI Horizon Pro is the real resolution.
Main functionhomehome
Operating systemAndroid 9.0Android TV 10.0
Lamp and image
Lamp typeLEDLED
Service life30000 h30000 h
Brightness ANSI Lumens2200 lm1500 lm
Colour rendering1.07 billion colours
Projection system
TechnologyDLPDLP
Size0.47"0.47"
Real resolution3840x2160 px3840x2160 px
Max. video resolution4096x2160 px
Image format support16:9, 16:10, 4:316:9, 16:10, 4:3
HDR support
Projecting
Rear projection
Throw distance, min0.5 m
Throw distance, max9 m
Image size18 – 330 "40 – 200 "
Throw ratio1.2:1 – 1.5:11.2:1
Zoom and focusmotorized (remote-controlled)motorized (remote-controlled)
Autofocus
Auto keystone correction
Keystone correction (vert), ±45 °40 °
Keystone correction (horizontal), ±40 °
Features
Features
 
 
3D support
 
 
light sensor
DLNA support
 
voice control
voice assistant
Bluetoothv 5.0
Wi-FiWi-Fi 5 (802.11ac)
AirPlay+
Chromecast
Miracast
Hardware
CPUMediatek MT9669
RAM4 GB2 GB
Built-in memory128 GB32 GB
USB 2.022
Speaker systemHarman KardonHarman Kardon
Number of speakers22
Sound power20 W16 W
HDMI inputs22
HDMI versionv 2.0v 2.0
Audio connectors
3.5 mm output (mini-Jack)
optical
3.5 mm output (mini-Jack)
optical
Service connectors
LAN (RJ-45)
LAN (RJ-45)
General
Noise level (nominal)28 dB
Power sourcemainsmains
Size (HxWxD)154x201x219 mm136x208x218 mm
Weight3.98 kg2.9 kg
Color
Added to E-Catalogseptember 2023july 2021

Operating system

Smart TV (proprietary system). The operating system of the projector is represented by the proprietary software shell of the manufacturer. Usually such operating systems have an attractive and convenient menu, similar to a traditional Smart TV. A proprietary operating system is developed by the manufacturer for the hardware resources of a particular projector model or a whole line. But, as practice shows, compared to the classic Smart TV, the functionality of proprietary system often has significant limitations, and the system itself, in fact, is a stripped-down version of a full-fledged Smart TV.

Smart TV (Android AOSP). This type of operating system is a modification of the popular Android OS, mainly notable for being open source. It is a versatile operating system that gives the user much more freedom to create changes and customizations within the system. At the same time, the installation and work stability of certain applications on this platform are not guaranteed, and the overall system management was not specially “tailored” for large screens, which may cause some inconvenience. First of all, such solutions will will generate interest among users who understand the features of the Android OS, like to customize and control everything, and have time for this.

Android TV. This type of projector has full-fledged Android TV software, spec...ially adapted to work on large screens. In accordance with the name, it is a type of Android OS, specially designed for projectors/TVs, etc. In addition to the common features of all “Androids” (such as the ability to install additional applications, including even games), it has a number of special features: optimized interface, integration with smartphones (including the ability to use them as a remote control), voice search, etc. Thanks to this, TVs with this feature are significantly superior in functionality to models with a Smart TV. Of course, a dedicated processor, graphics subsystem and memory are provided for the operation of a multifunctional OS, and the presence of such hardware resources is reflected in the total cost of the projector. Given the same optical design, models with Android TV will cost more than classic projectors with a simple multi-line menu.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Colour rendering

The number of individual colour shades that the projector is capable of displaying.

The minimum indicator for modern projection technology is actually 16 million colours (more precisely, 16.7 million is a standard number associated with the features of digital image processing). In the most advanced models, this value can exceed 1 billion. However, two nuances should be taken into account here: firstly, the human eye is able to recognize only about 10 million colour shades, and secondly, not a single modern image output device (projectors, monitors, etc.) cannot cover the entire spectrum of colours visible to the human eye. Therefore, impressive colour performance is more of a marketing ploy than a real indicator of image quality, and in fact it makes sense to pay attention to other characteristics — primarily brightness and contrast (see above), as well as specific data like a colour gamut chart.

Max. video resolution

The actual maximum frame resolution that the projector is capable of processing and displaying.

Many models allow project images at a higher resolution than the actual resolution of the projector matrix (see above). For example, a 1920x1080 video can be displayed on a device with a frame size of 1024x768. However, the quality of such an image will be noticeably lower than on a projector, which initially has a resolution of 1920x1080.

The maximum resolution is closely related to both the overall picture quality and the size of the projection screen. The higher the resolution, the sharper the image details become. Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between the Quad HD and 4K formats. A high-resolution picture will be able to show itself on a truly large screen.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.

Throw distance, max

The farthest distance from the screen that the projector can be used on. This is the maximum distance at which the image remains in focus and maintains acceptable brightness — at least enough for viewing in a darkened room on a high-quality screen.

It is necessary to choose according to this parameter taking into account the expected operating conditions and the distances to be dealt with. At the same time, it's ok to have a certain margin for the maximum distance — since, as already mentioned, it is usually indicated for an perfect screen and a darkened room, and such conditions are not always available. Also note that although the throw distances depend on the lens, not every projector with an interchangeable lens allows the installation of more "long-range" optics than the standard one — the device may simply not have enough brightness for an increased distance.

Image size

Size of the image projected by the projector. Usually, it is indicated as a range — from the smallest, at the minimum throw distance, to the largest, at the maximum. About throw distances, see above; here it is worth saying that the choice of diagonal size depends both on the distance between the screen and the audience, and on the format of the projector. For example, to watch a video, the best option is the situation when the distance from the viewer to the image corresponds to 3-4 diagonals, and a relatively large picture can be useful for working with presentations. More detailed recommendations for different situations can be found in special sources; here we only recall that the image must fit on the screen used with the projector.

Throw ratio

The projector's throw distance is vital in determining what size projection screen to use and how far away it should be from the projector. Most projectors have a variable throw ratio. In the extreme positions, these are wide-angle mode (smallest value) and telephoto lens mode (largest value). Knowing these values, you will be able to determine the range of throw distances within which the projector must be placed in order for the projected image to match the specified dimensions of the projection screen.

According to these values, you need to check or set the optical zoom. We divide the larger value by the smaller value, and we get a figure, for example 1.33-2.16: 1.

If we want to calculate whether this projector is suitable for a certain image size, we do this: 1.33*3 (image width)=the distance at which the projector should hang.

Autofocus

Autofocus adjusts the optimal image sharpness without user assistance. This option will be extremely useful if the projector often has to be moved from place to place — in this case, the user does not have to manually turn the focal length adjuster to adjust the optimal image sharpness. Autofocus is based on the use of a special sensor (range finder) that determines the distance to the screen. Knowing the distance and throw ratio (see the relevant paragraph), the projector's automation adjusts the focus of the lens. Projectors with autofocus are equipped with a lens with a motor that turns the focal length adjuster.
XGIMI RS Pro 2 often compared
XGIMI Horizon Pro often compared