Dark mode
USA
Catalog   /   Photo   /   Digital Cameras

Comparison Fujifilm X-T30 II body vs Fujifilm X-S10 body

Add to comparison
Fujifilm X-T30 II  body
Fujifilm X-S10  body
Fujifilm X-T30 II bodyFujifilm X-S10 body
Compare prices 2Compare prices 2
TOP sellers
Main
Shooting 4K with a maximum bitrate of 200 Mbps.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
Sensor
SensorCMOS BSICMOS BSI
Sensor sizeAPS-C (23x15.5 mm)APS-C (23x15.5 mm)
Effective MP number2626
Maximum image size6240x4160 px6230x4160 px
Light sensitivity (ISO)80 - 5120080-51200
RAW format recording
No AA filter
Lens
Mount (bayonet)Fujifilm XFujifilm X
Manual focus
Image stabilizationis absentwith matrix shift
Photo shooting
HDR
2 control dials
White balance measuring
Exposure compensation± 5 EV, in 1/3 EV steps± 5 EV, in 1/3 EV steps
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 240 fps1920x1080 px 240 fps
Ultra HD (4K)4096x2160 px 30 fps3840x2160 px 30 fps
File recording formatsMPEG-4MPEG-4, MOV
Manual video focus
Maximum video length
time limit
time limit
Connection ports
HDMI v 1.4
headphone Jack
 
HDMI v 1.4
 
microphone Jack
Focus
Autofocus modes
one shot
AI focus
tracking
in face
 
one shot
AI focus
tracking
in face
by smile
Focus points425 шт425 шт
Touch focus
Front / back adjustment
Contour enhancement
Viewfinder and shutter
Viewfinderelectronicelectronic
Viewfinder crop0.93 x0.93 x
Frame coverage100 %100 %
Shutter speed900 - 1/4000 с30 - 1/4000 с
Continuous shooting30 fps30 fps
Shutter typeelectronic/mechanicalelectronic/mechanical
Screen
Screen size3 ''3 ''
Screen resolution1620 thousand pixels1040 thousand pixels
Touch screen
Rotary display
Memory and communications
Memory cards typesSD, SDHC, SDXCSD, SDHC, SDXC
Communications
Wi-Fi
Bluetooth v 4.2
smartphone control
Wi-Fi
Bluetooth
smartphone control
Flash
Built-in flash
Guide number5
Application range7 m
External flash connect
Power source
Power source
battery
battery
Battery modelNP-W126s
Shots per charge390 шт325 шт
General
Charger modelBC-W126
Materialmagnesium alloysteel
Retrodesign
Dimensions (WxHxD)118х83х47 mm126x85x65 mm
Weight378 g465 g
Color
Added to E-Catalogseptember 2021october 2020

Maximum image size

The maximum size of photos taken by the camera in normal (non-panoramic) mode. In fact, this paragraph indicates the highest resolution of photography — in pixels vertically and horizontally, for example, 3000x4000. This indicator directly depends on the resolution of the matrix: the number of dots in the image cannot exceed the effective number of megapixels (see above). For example, for the same 3000x4000, the matrix must have an effective resolution of at least 3000*4000 = 12 million dots, that is, 12 MP.

Theoretically, the larger the size of the photo, the more detailed the image, the more small details can be conveyed on it. At the same time, the overall image quality (including the visibility of fine details) depends not only on resolution, but also on a number of other technical and software factors; see "Effective MP number" for more details.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

No AA filter

No AA filter in camera design.

The AA filter is responsible for "anti-aliasing" — the elimination of the moiré effect. This effect can occur when shooting objects with a lot of thin horizontal or near-horizontal lines (for example, a brick wall at a great distance, or a suit made of a certain type of fabric). It leads to the appearance of a characteristic pattern in the picture, which, usually, is inappropriate; to eliminate this phenomenon, an AA filter is provided. At the same time, this feature is said to reduce the overall sharpness of the image; therefore, it may not be available in some cameras. These are mainly professional models: the absence of an AA filter gives the photographer additional features, but puts forward increased requirements for shooting skills.

Image stabilization

An image stabilization method provided by a camera. Note that optical and sensor-shift systems are sometimes combined under the term "true" stabilization, due to their effectiveness. See below for more details.

Stabilization itself (regardless of the operating principle) allows you to compensate for the "shake" effect when the camera is not positioned correctly - especially when shooting handheld. This is especially important when shooting with significant magnification or at long shutter speeds. However, in any case, this function reduces the risk of ruining the frame, so cameras with stabilization are extremely common. The operating principles can be as follows:

— Electronic. Stabilization is carried out by means of a kind of “reserve” — a section along the edges of the sensor, which is not initially involved in the formation of the final image. However, if the camera electronics detect vibrations, it compensates for them by selecting the necessary fragments of the image from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their operation, it is necessary to allocate a fairly significant part of the sensor — and reducing the useful area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is enabled only at lower resolutions and is not available at full...frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable optics.

— Optical. Stabilization is achieved when light passes through the lens — due to a system of moving lenses and gyroscopes. As a result, the image gets to the sensor already stabilized, and the entire area of the sensor can be used for it. Therefore, optical systems, despite their complexity and rather high cost, are considered more preferable for high-quality shooting than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera type") the presence of this function depends on the installed lens; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the kit lens is equipped with a stabilizer).

— With sensor shift. Stabilization performed by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, sensor shift systems have serious advantages — first of all, such stabilization will work regardless of the characteristics of the lens. For cameras with non-replaceable optics, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, sensor shift allows even "non-stabilized" lenses to be used with convenience, and when "stabilized" optics are installed, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the above options: initially, it operates on an optical principle, and when the lens's capabilities are not enough, an electronic system is connected. This allows for an increase in overall efficiency in comparison with purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are comparatively complex and expensive, and not the entire sensor is used. Therefore, such a combination is rare, mainly in individual advanced digital compacts.

— With sensor shift and electronic. Another type of combined stabilization systems. Like "optical + electronic", it improves the overall efficiency of stabilization, but at the same time combines the disadvantages of both methods (they are also similar: more complicated and more expensive camera plus a decrease in the useful area of the sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.

HDR

Camera support for HDR.

HDR stands for High Dynamic Range. The main application of this technology is shooting scenes with significant differences in illumination, when there are both very bright and very dark areas in the frame. The features of modern digital photography are such that in the normal shooting mode, only a rather narrow range of brightness can be correctly processed; as a result, with a large difference in illumination, the image contains either too dark or overexposed fragments. HDR avoids this phenomenon: in this mode, the camera takes several shots with different exposure settings, and then glues them together in such a way as to reduce the brightness in bright places and increase in dark places. This allows you to shoot, for example, landscapes against the backdrop of a bright sunset sky, the interiors of dimly lit buildings with bright windows, etc. In addition, HDR can also be used as an artistic technique — to give the picture an unusual colour scheme.

Note that this effect can also be achieved using post-processing in a graphics editor; however, using the camera is much more convenient.

Ultra HD (4K)

The maximum resolution and frame rate of video captured by the camera in the Ultra HD (4K) standard.

UHD 4K refers to resolutions with a frame size of approximately 4,000 horizontal pixels. Specifically, in cameras for video shooting, resolutions of 3840x2160 and 4096x2160 are most often used. Regarding the frame rate, it is worth noting first of all that a normal (not slow-motion) video is shot at a speed of up to 60 fps, and in this case, the higher the frame rate, the smoother the video will be, the less jerks will be noticeable when moving in the frame. If the frame rate is 100 fps or higher, this usually means that the camera has a slow-motion video mode.

File recording formats

File formats in which the camera can record video. Given that the footage is designed to be viewed on an external screen, you should make sure that the playback device (DVD player, media centre, etc.) is able to work with the appropriate formats. At the same time, many camera models themselves can play the role of a player by connecting to a TV via an audio / video output or HDMI (see the corresponding paragraphs of the glossary). And if the video materials are to be viewed on a computer, you should not pay special attention to this parameter at all: problems with format incompatibility in such cases rarely occur, but are usually solved by installing the appropriate codec.

Connection ports

— USB C. A universal USB interface that uses a Type C connector. USB ports themselves (all types) are used mainly for connecting the camera to a computer for copying footage, managing settings, updating firmware, etc. Specifically The Type C connector is comparable in size to earlier miniUSB and microUSB, but has a reversible design that allows the plug to be inserted in either direction. In addition, USB C often operates according to the USB 3.1 standard, which allows for connection speeds of up to 10 Gbps - a useful feature when copying large amounts of content.

- HDMI. A comprehensive digital interface that allows you to transmit video (including high resolution) and audio (up to multi-channel) over a single cable. The presence of such a port makes it possible to use the camera as a player: it can be directly connected to a TV, monitor, projector, etc. and view your footage on the big screen. In this case, broadcast capabilities can include not only video playback, but also demonstration of captured photos in slide show mode. HDMI inputs are present in most modern video equipment, and connection is usually not a problem.
Nowadays, there are several versions of the HDMI interface on the market:
  • v 1.4. The oldest version currently relevant, released in 2009. However, it supports 3D video, is capable of working with resolutions up to 4096x2160 at a speed of 24 fps, and in Full HD resolution the frame rate can reach 120...fps. In addition to the original v.1.4, there are also improved modifications - v.1.4a and v.1.4b; they are similar in basic capabilities, in both cases the improvements affected mainly work with 3D content.
  • v2.0. Significant HDMI update introduced in 2013. In this version, the maximum frame rate in 4K has increased to 60 fps, and support for ultra-wide 21:9 format can also be mentioned. In update v.2.0a, HDR support was added to the interface capabilities; in v.2.0b this function was improved and expanded.
  • v 2.1. Despite the similarity in name to v.2.0, this version, released in 2017, was a very large-scale update. In particular, it added support for 8K and even 10 K at speeds up to 120 fps, and also further expanded the capabilities for working with HDR. This version was released with its own cable - HDMI Ultra High Speed; all features of v.2.1 are available only when using cables of this standard, although basic functions can be used with simpler cords.


— Headphone output. Audio output allows you to connect headphones to the camera. As a rule, it is represented by a classic 3.5 mm mini-jack. The presence of such a connector provides the ability to monitor sound during video recording in real time. This is especially important when filming interviews, vlogs and other similar projects.

— Microphone input. Specialized input for connecting an external microphone to the camera. External microphones are significantly superior to built-in microphones in sound quality. Firstly, they are not so sensitive to the camera’s “own” sounds - from buttons, control wheels, focus motors, etc. (and if the microphone uses a long wire and is not attached to the body, these sounds will not be heard at all). Secondly, external microphones themselves have more advanced characteristics. On the other hand, their use is justified mainly for professional video recording; therefore, the presence of a microphone input, as a rule, corresponds to advanced video recording capabilities

Autofocus modes

Autofocus operating modes provided in the camera design.

— One picture. The main mode of autofocus operation is found in all modern cameras and is used most often. Designed for shooting motionless objects.

— Follower. This mode is used for shooting moving objects, the distance to which is constantly changing: the camera constantly monitors the position of the object, constantly adjusting the optics so that it is in focus. Usually found in middle and upper class cells.

— AI focus. A peculiar combination of the previous two modes is used when a stationary object can start moving at any moment. If the scene is static, autofocus works in the single frame mode, but if the object on which focus is made starts to move, the device switches to tracking autofocus mode. AI mode allows you to almost instantly set the optimal autofocus settings, which is especially useful for sequential shooting. Initially, it was found in expensive models, however, thanks to the development of technology, today it can even be used in inexpensive compacts (see “Camera type”).

— By the face. Autofocus mode that uses a face recognition system and focuses on them. This feature is especially useful for taking pictures of people at a great distance from the camera, when the face is much smaller than the frame size, such as in group shots.

— With a smile. A further development of the face autofocus mode described above, when, in accordance with the nam...e, the system reacts not just to a face, but to a smile. This mode can be combined with the function of automatic shooting at the moment of a smile.

— Animal in the frame. A mode designed primarily for shooting animals, which can be difficult (and often impossible) to make them sit still in the frame. It is usually a variation of the tracking autofocus described above, but specific features of operation may vary depending on the camera model.

This list is not exhaustive, and other specific autofocus modes may be provided in the design of modern cameras.
Fujifilm X-T30 II often compared
Fujifilm X-S10 often compared