Max weight
The maximum load allowed for a bicycle is, in other words, the maximum weight that it can normally carry in normal use. Of course, when calculating the load, the weight of both the cyclist himself and the additional load that he carries with him is taken into account.
The permissible load must definitely not be exceeded: even if the bike does not break down immediately, off-design loads can weaken the structure, and an accident can occur at any time. Also note that it is desirable to have a certain weight margin — at least 15 – 20 kg: this can be useful in case of transporting heavy loads and will give an additional guarantee in emergency situations (for example, when a wheel gets into a pit). Considering that the average weight of an adult is about 70 – 80 kg, bicycles with a permissible load
of up to 100 kg can be classified as "lightweights",
from 100 to 120 kg — to the middle category,
more than 120 kg — to "heavy trucks".
Recommended height
The user's height recommended by the manufacturer is calculated according to several parameters. One is the wheel diameter, and the second and more important is the frame size. If everything is simple with the wheel size — it is round and always the same, then the frame size complicates the choice. Different types of bicycles have their own frame shape, so even the same size can be suitable for different heights. And this is not to mention the features of the manufacturer, who like to do everything for themselves, and not in a general manner. Therefore, the size of the frame of each bicycle has its own size and it is still better to choose a bicycle by personally “saddling” it. If this is not possible, then our point will tell you what height, according to the manufacturer, this configuration (frame + wheel) of the bike is designed for.
Seatpost suspension
The presence in the design of the bicycle of a separate shock absorber under the saddle.
The seatpost cushioning significantly reduces the vibration and shock felt by the rider, which is especially important when riding on uneven terrain.
Tyre
Tyre model supplied with the bike as standard. Different tyres have different purposes and characteristics; knowing the tyre model, you can clarify these points and check how they correspond to your wishes. This is especially important when choosing a machine for serious cycling.
Crank model
Model of a connecting rod mounted on board a bicycle.
Cranks is a system of levers that connects the pedals and stars of the front carriage. With its help, the energy of the pressure of the cyclist's legs on the pedals is transmitted. Connecting rods are made from hardened steel, aluminium, titanium or carbon fibre and can be solid or hollow inside. Knowing a specific brand of connecting rod, you can find technical documentation for it or, for example, study reviews on this part on the Internet.
Max range
The maximum range of an e-bike (see "Application") is the maximum distance that it can be ridden using the electric motor on a single battery charge.
Usually, the characteristics indicate the range at the most economical way to use the battery: in the pedal assist mode (see "Operating modes") and at a relatively low speed. Accordingly, in fact, this parameter may turn out to be lower than the claimed one, especially if you drive in full electric mode. Nevertheless, in terms of power reserve, it is quite possible to evaluate and compare various models with each other.
Note that it makes sense to specifically look for a model with a power reserve
of more than 50 km if long trips are planned without recharging along the way. For episodic rides, you can pay attention to cars
with less battery life — they are simpler and cheaper.
Battery capacity
The capacity of the battery that the e-bike is equipped with (see "Application"), expressed in ampere-hours.
The battery capacity directly affects the operating time on a charge and, accordingly, the power reserve. However, in fact it hardly makes sense to evaluate these parameters by the number of ampere-hours. Firstly, the actual battery life will depend not only on the characteristics of the battery, but also on the power of the engine (which determines the power consumption of the machine). Secondly, the actual amount of energy stored in the battery depends not only on the capacity in ampere-hours, but also on the rated voltage; a more reliable unit in this sense is watt-hours, see Battery Capacity below for more details. So when choosing, it is better to focus not so much on the number of ampere-hours, but on the power reserve directly claimed by the manufacturer.
Battery capacity
The capacity of the battery that the e-bike is equipped with (see "Application"), expressed in watt-hours.
The main modern unit of capacity is the ampere-hour, but this designation is not entirely reliable: the actual capacity of the battery is determined not only by ampere-hours, but also by the operating voltage. In fact, this means that two batteries with the same Ah and different voltages will have different actual capacities. In order to take this nuance into account, the designation in watt-hours was introduced: it is as reliable as possible, in terms of capacity in Wh, you can compare batteries with any nominal voltage. In this case, Wh can be converted to Ah and vice versa using a special formula if the battery voltage is known.
See "Battery Capacity" above for details on capacity in general.
Full charge time
The time required to charge the ebike battery (see "Application") from zero to 100%. This parameter allows you to estimate how long breaks you will have to take to replenish your energy supply. However, even in the slowest models, this time does not exceed 8 hours — this allows, for example, to drive during the day and put the battery on charge from evening to morning.