USA
Catalog   /   Large Appliances   /   Vacuum Cleaners

Comparison Severin HV 7146 vs Concept VP 4380

Add to comparison
Severin HV 7146
Concept VP 4380
Severin HV 7146Concept VP 4380
Compare prices 1Outdated Product
TOP sellers
Typemanual (household)manual (household)
Cleaning typedrydry
Dust collectorcyclone (bagless)cyclone (bagless)
Specs
Motor power110 W
Suction force8200 Pa
Dust collector capacity0.65 L0.45 L
Power adjustmenton the handle
Water suction
Fine filterHEPA
Nozzles included
Nozzle functions
mini turbobrush
crevice
dust brush
mini turbobrush
crevice
dust brush
Power source
Source of powerbatterybattery
Battery voltage18.5 V18.5 V
Battery typeLi-IonLi-Ion
Battery capacity2.2 Ah2.2 Ah
Battery run time
30 min /20 min at maximum power/
35 min
Charging time5 h4 h
Charging stationwall-mounted
More specs
Noise level80 dB
LED lighting
Dimensions (HxWxD)44x12.5x13.5 cm
Weight1.1 kg1.05 kg
Color
Added to E-Catalogjuly 2022april 2021

Motor power

Rated power consumed by the vacuum cleaner. In models with power adjustment (see below), the maximum value is taken into account in this case. We are talking about the characteristics of the installed motor, which is the main, and in most vacuum cleaners, the only consumer of energy.

Higher power increases suction force and improves overall cleaning efficiency. In addition, a more powerful unit is easier to equip with a capacious dust collector. On the other hand, only vacuum cleaners of the same type with the same types of dust collectors can be directly compared by this parameter (see above for both). And even in such cases, the actual suction force (see below) may be different — and it is it that determines the real efficiency. However, the total power also allows you to generally evaluate the capabilities of the vacuum cleaner, including in comparison: a 1500 W model will significantly outperform its 800 W counterpart in efficiency (although it is impossible to say exactly by how much). But what definitely depends on this indicator is energy consumption.

As for specific power values, they are largely related to the type of device. For example, handheld models, robots and uproght units have low power — less than 1500 W(and often noticeably less). Such values are quite popular among other types of vacuum cleaners (conventional, industrial, workshop, etc.), but among them there are already more solid indicators — ...f="/list/90/pr-1067/">1500 – 1750 W, 1750 – 2000 W and even more than 2000 W.

Suction force

The suction force provided by the vacuum cleaner. It is indicated by the maximum vacuum (negative pressure) that the unit can create at the working nozzle.

Note that this parameter is sometimes confused with the suction power described above, which is indicated in watts. Yes, suction force to some extent determines the efficiency of the unit. However, this efficiency also depends on the performance (airflow). And the suction power, indicated in watts, takes into account both of these parameters — it is determined by multiplying the suction force by the performance (see above for more details). For this reason, there is no strict relationship between this force and suction power: for example, a vacuum of 25,000 Pa can be found in models with 250 W, 200 W and even 150 W of power.

As for the practical significance of this spec, in general, a higher suction force allows you to work more efficiently with high resistance. For example, when processing carpets with a long pile. On the other hand, more pascals (with the same number of watts) means less airflow and, accordingly, less efficiency for large amounts of work at low resistance (for example, cleaning large rooms with parquet floors). Thus, it makes sense to pay attention to this indicator mainly in cases where high suction force is fundamental for you. In other cases, it is worth evaluating the capabilities of the vacuum cleaner in terms of suction power in watts.

Note that for a number of...reasons, the suction power is most often specified for robot vacuum cleaners (see “Produc type”). For such models, a value of 1500 Pa and below is considered very small, 1500 – 2000 Pa — medium, 2000 – 2500 Pa — high, more than 2500 Pa — very high.

It is also worth mentioning that the indication of suction force is often used as a publicity trick — to improve the impression of the product. For example, the suction power of 150 watts in itself is quite modest. But at the same time, the suction force of such a vacuum cleaner can be 25,000 Pa — a very impressive figure, especially for an inexperienced buyer, but having a very indirect relation to real efficiency. Especially often, such tricks are used among upright models and the already mentioned robots — these varieties initially do not differ in high power in watts. For many of these units, the characteristics only indicate the vacuum in pascals without specifying the suction power. It further enhances the impression: for example, in the specs of a modest robot, the figure "3000 Pa" looks much more impressive than "40 W". However, such figures have a very weak relation to the real capabilities of the unit and if they are not supplemented by data on suction power in watts, they should be considered solely as bait for a not particularly sophisticated buyer.

Dust collector capacity

The nominal volume of the dust collector installed in the vacuum cleaner.

This indicator largely depends on the type of unit (see above). For example, in most handheld household models, the capacity does not exceed 0.5 L. The volume of the container in upright vacuum cleaners and robots can be somewhat larger — among the first variety there are quite a few models for 1 – 2 liters or even more, and among the second — by 0.6 – 1 liter and a little more. For conventional vacuum cleaners, the minimum figure is actually about 0.8 – 1 L; dust collectors for 1 – 2 L and 2 – 4 L are very popular in such devices; the maximum capacity is actually 4 – 6 liters — units of a similar layout, but with a larger capacity, are usually referred to as household ones. In turn, relatively small containers are occasionally found among workshop models. However, in vacuum cleaners of this type, the capacity is generally quite large — it can reach 26 – 50 liters or even more ; the same applies to industrial (construction) units.

In general, a larger dust container allows you to work longer without interruptions. On the other hand, a capacious container itself takes up more space and, accordingly, affects the size, weight and price. So when choosing th...is parameter, it is worth considering the actual features of the use of a vacuum cleaner. Here we can give such an example: for a full-scale cleaning of an average city apartment, a capacity of about 1 – 1.5 litres is required. Thus, say, a 4-litre bag allows you to carry out two such cleanings with sufficient efficiency without unloading the vacuum cleaner. There are more detailed recommendations regarding the optimal volume of the dust collector, including specific cleaning options. These recommendations can be found in special sources.

Power adjustment

The type of power regulator provided in the design of the vacuum cleaner.

By itself , power adjustment allows you to adjust the operating mode to the current situation. For example, to clean a thick carpet, it is better to use a vacuum cleaner on full power, and on a delicate sofa or chair, it may be better to reduce the power. Types of power regulators are distinguished by location; options can be as follows:

— On body. The most popular option among modern vacuum cleaners. The main advantage of models with this design is that they do not require special hoses (unlike the units described below with adjustments on the handle). However, installation on the body is not very convenient for conventional vacuum cleaners (see "Type") — to change the power, you have to lean towards the body every time. However, for most users, it is not critical.

— On handle. The power regulator on the handle of the vacuum hose is convenient because the control is right at your fingertips, and you can change the power with just one movement of your finger, without bending over to the body. However, this convenience has a downside. So, some of these vacuum cleaners can only be fully used with special hoses; when installing a classic hose (without a regulator), the device, at best, will only work at full power, without adjustment, at worst, it will not turn on at all. A special hose is usually included...in the kit, but finding a replacement for it can be a quite troublesome (and costly) business. In other models, a wireless remote control is used, and its presence significantly affects the price of the unit.

— On body and handle. Vacuum cleaners combine both of the options described above. Usually, a hose with a regulator on the handle is supplied with such a unit. However, if necessary, you can install a regular hose and change the power with a switch on the body. Such control is the most versatile. Nevertheless, it is more expensive than each of the options described above.

Fine filter

The presence of a HEPA fine filter in the vacuum cleaner; also in this paragraph, the specific class of this filter is often specified.

HEPA (High Efficiency Particulate Absorbing) filters are designed to purify the air from the smallest mechanical contaminants — up to tenths of a micron in size. It allows you to trap not only fine dust but even bacteria. For comparison: the size of most bacteria starts at 0.5 microns, and the effectiveness of HEPA filters is evaluated by the ability to retain particles with a size of 0.1 – 0.3 microns. The most advanced such filters ( class 13 and above) are able to remove more than 99.9% of these particles from the air. Here is a more detailed description of the different classes:

— HEPA 10 – traps at least 85% of particles with a size of 0.1 – 0.3 microns;
— HEPA 11 – at least 95% of such particles;
— HEPA 12 – not less than 99.5%;
— HEPA 13 – not less than 99.95%;
— HEPA 14 – not less than 99.995%;

Note that pollution with a size of 0.1 – 0.3 microns is the worst-kept by HEPA filters, so with particles of other sizes (both larger and smaller), the efficiency of such elements will be even higher.

Regarding the choice for this parameter, it is worth noting that, in fact, it does not always make sense to pursue a high filtration class. For example, during wet cleaning with a washing vacuum cleaner (see abov...e), the HEPA filter, in fact, is not needed at all (in many models, it is recommended to remove it altogether for such cases). So if you plan to use such a vacuum cleaner mainly for washing, you can ignore this parameter. Another specific case is industrial units (see "Type"): they are often used for rough cleaning of large debris, where thorough air filtration is not required.

Battery run time

The operating time of a battery-powered vacuum cleaner (see "Power supply") on a single battery charge.

Usually, the average operating time in normal mode is indicated here. Accordingly, in fact, the battery life of the vacuum cleaner may differ slightly from the claimed one, depending on the chosen application format. Nevertheless, the operating time indicated in the specifications is a fairly reliable indicator; it can be used both for a general assessment of battery life and for comparing the selected vacuum cleaner with other models.

Separately, we note that increasing battery life requires either the use of more capacious (and therefore more expensive and heavier) batteries or a decrease in engine power (and the efficiency of the unit as a whole). So it is worth looking specifically for a long working vacuum cleaner if these moments are outweighed by a long operating time.

Charging time

The time required to charge the cordless vacuum cleaner fully (see "Power supply").

Larger batteries tend to take longer to charge. On the other hand, modern batteries can use various solutions that speed up the process, so there is no strict dependence here.

Separately, we note that the speed of charging batteries is usually uneven: at first, the process is fast, then it gradually slows down. So if, for example, the specifications indicate a charging time of 2 hours, then charging from 0 to 50% will take a little less than an hour, and from 50% to 100% the remaining time.

Charging station

A feature found in battery-powered vacuum cleaners - most robots, as well as some upright models (see "Type").

The charging station combines the functions of a charger and a storage device. Its specific design may be different. Robots are equipped with a floor docking station; most of these devices can remember the location of the station and, if necessary, return to it on their own — for recharging or at the end of the program. In other types of vacuum cleaners, the charging station usually is wall-mounted. The vacuum cleaner hangs on it while connecting to a power source to charge the battery. Some of the wall attachments can also be used to charge the battery removed from the vacuum cleaner. However, we emphasize that traditional chargers that do not provide for hanging on the wall and fixing the entire vacuum cleaner are not considered charging stations. Less common are floor-standing charging stations for upright vacuum cleaners and desktop docking stations for charging portable (handheld) models.

In any case, this function is almost standard for robots, but upright and handheld household vacuum cleaners equipped with a charging station, in general, are quite advanced and expensive devices.

Noise level

The noise level produced by the vacuum cleaner during operation. Usually, the value for normal operation at maximum engine power is indicated here. With less power, the loudness of the unit may be lower, but the key is precisely the maximum indicator.

Regarding specific numbers, keep in mind that the decibel used to measure the noise level is a non-linear quantity. Therefore, it is worth evaluating specific indicators using special comparative tables. In general, vacuum cleaners are quite noisy appliances; so in this case, models are considered quiet if this indicator does not exceed 65 dB — this is the level of a loud conversation between 2 – 3 people at a distance of 1 m. The quietest of these models give out only 40 dB — this is the average volume of a person’s speech in normal tones (and the minimum volume allowed for constant noise sources in living quarters during the day). For louder units, the comparison table looks like this:

66 – 70 dB — loud conversations between several groups of people at a distance of about 1 m;
71 – 75 dB — the volume of a cry or laughter in full voice at a distance of about 1 m;
76 – 80 dB — the volume of a mechanical alarm clock or the engine of an old truck;
more than 80 dB — a very high noise level, exceeding the level of a loud scr...eam; when working with a vacuum cleaner having such specifications for a long time, it is highly desirable to use hearing protection.

Also note that the noise level largely depends on the engine power, as well as some other features (for example, it is strongly affected by the presence of an aquafilter — see "Dust collector"). At the same time, there is no hard connection here, and units with a similar set of specifications can differ markedly in actual loudness. In such cases, when choosing here, it is worth proceeding from the fact that a quieter vacuum cleaner will be more comfortable to use. However, it will most likely cost noticeably more.