USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Amplifiers

Comparison Rotel A12 vs Yamaha A-S301

Add to comparison
Rotel A12
Yamaha A-S301
Rotel A12Yamaha A-S301
from $1,249.00 
Outdated Product
Compare prices 7
TOP sellers
Main
The frequency range of the digital section of the amplifier is from 10 Hz to 80 kHz (± 3.0 dB). ByPass Direct mode. USB, Bluetooth with aptX. DAC. Preamp output. 4 pairs of acoustic inputs. 2 trigger outputs. remote control. Standby mode.
Device typeintegrated amplifierintegrated amplifier
Element basetransistortransistor
Capacitor capacitance7 mF
Amplifier parameters
Number of channels22
Frequency range
10 – 100000 Hz /± 0.5 дБ/
10 – 100000 Hz /+/- 1 дБ/
Power per channel (8Ω)60 W60 W
Power per channel (6Ω)70 W
Signal to noise ratio100 dB99 dB
Signal to noise ratio (Phono MM/MC)90 dB82 dB
Damping factor220210
Harmonic distortion0.03 %0.019 %
Channel sensitivity / impedance
Line input
200 mV
24 kOhm
200 mV
47 kOhm
Phono MM/MC
3 mV
47 kOhm
3 mV
47 kOhm
REC output
 
 
200 mV
1 kOhm
Preout
1000 mV
470 kOhm
 
 
Connectors
Inputs
Phono
USB B
coaxial S/P-DIF /2/
optical /2/
RS-232
control input (IR)
Phono
 
coaxial S/P-DIF
optical
 
 
RCA4 pairs4 pairs
Outputs
Pre-Amp
 
 
to subwoofer
For acoustics4 шт4 шт
REC (to recorder)2 pairs
Trigger output2 шт
On headphones6.35 mm (Jack)
Front panel
display
 
audio input jack /USB type A/
headphone output
 
indicators
 
headphone output
Features
Adjustments
bass control
treble adjustment
balance adjustment
level adjustment
 
bass control
treble adjustment
balance adjustment
level adjustment
loudness
More features
By-pass/Direct
 
ММ phono stage
additional speaker connect
Bi-Wiring
Bluetooth
By-pass/Direct
auto power off
ММ phono stage
additional speaker connect
Bi-Wiring
 
General
Remote control
PSUinternalinternal
Power consumption230 W
190 W /430W maximum/
Standby consumption0.5 W0.5 W
Dimensions (WxDxH)430x345x93 mm435x387x151 mm
Weight8 kg9 kg
Color
Added to E-Catalogmarch 2017january 2015

Capacitor capacitance

The total capacitance of the capacitors installed in the power supply of the amplifier. Usually, for ordinary lovers of high-quality sound, this indicator is not practically significant: the capacitance is selected in such a way as to optimally (or at least minimally) match the characteristics of the amplifier. However, for demanding audiophiles who pay attention to the smallest details of audio system components, capacitors are also often of interest.

The fact is that they are an important part of the rectifier circuit — they smooth out current fluctuations that arise both due to the imperfection of the rectifiers themselves and due to various external factors. Knowing the total capacitance of the capacitors, one can also evaluate the efficiency of their work: the higher this indicator, the more stable the power supply will work and the lower the likelihood of sound distortion due to its fault. There are special formulas that allow you to derive the optimal capacitance of capacitors depending on the type, power and other parameters of the amplifier; they can be found in specialized sources.

Power per channel (6Ω)

The nominal sound power output by the amplifier per channel when a load with a dynamic resistance (impedance) of 6 ohms is connected to it. See Power per Channel (8Ω) for more information on power rating and its relationship to impedance.

Signal to noise ratio

In itself, the signal-to-noise ratio is the ratio of the level of pure sound produced by the amplifier to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of 70 – 80 dB in modern amplifiers can be considered acceptable, 80 – 90 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of at least 100 dB is considered mandatory.

If the specifications do not specify for which output the signal-to-noise ratio is indicated, it usually means its value for the linear input (see "RCA (par)"). This is quite enough to evaluate the quality of the device for this parameter. However, some manufacturers indicate it for other inputs — Main, Phono; see below for more on this.

Signal to noise ratio (Phono MM/MC)

signal-to-noise ratio when the amplifier is driven through the Phono input. This interface is for connecting turntables; its features are described in the “Inputs” section below, and for the meaning of any signal-to-noise ratio, see the corresponding section above.

Damping factor

The damping factor describes the quality of interaction between the amplifier and the speaker system connected to it.

Due to the design features, any speaker is prone to the occurrence of so-called parasitic oscillations — oscillations that continue after the main impulse from the amplifier has ceased (similar to how a string continues to vibrate after a pluck). This phenomenon has a negative effect on sound quality, and manufacturers use various means to reduce it to an absolute minimum; suppression of parasitic oscillations is called damping.

The most effective type of damping is electrical, by reducing the output impedance of the amplifier. The lower this resistance, the better the amplifier keeps the speakers from unnecessary vibrations. To evaluate this effect, they introduced the concept of “damping factor” (damping factor) — the ratio of the load resistance (impedance) to the output resistance of the amplifier. The minimum value of such a coefficient for Hi-Fi class equipment is 20; indicators at the level of 100 – 120 can be called good, and among the Hi-End segment there are numbers of the order of several thousand.

At the same time, it is worth noting that when increasing to three-digit numbers, the original meaning of this parameter is, in fact, lost, and other points appear. The most important of them from a practical point of view is that models with a high damping factor are very demanding on the quality of the connection to t...he speakers — the high resistance of cables and connectors can negate the damping properties of the amplifier itself. There are other nuances associated with this indicator (in particular, recommendations for choosing an amplifier and speakers for each other); they are described in detail in specialized sources.

Harmonic distortion

This indicator describes the amount of non-linear distortion introduced by the amplifier into the processed signal. Such distortions are not necessarily perceived as extraneous noise, but they degrade the quality of the sound anyway — for example, they can make it more deaf. It is almost impossible to avoid them, but it can be reduced to levels inaudible to the human ear.

As a result, the harmonic distortion factor (harmonics) is one of the main parameters describing the overall sound quality in Hi-Fi and Hi-End amplifiers. The lower it is, the clearer the sound. Hundredths of a percent are considered a good indicator for modern amplifiers, thousandths and below are excellent. The exceptions are tube and hybrid models, for which rather high harmonic coefficients are allowed; see "Element base" for more details.

Line input

The sensitivity and dynamic impedance of the amplifier when a signal is applied to the RCA line input.

Under the sensitivity of any input (except optical) is meant the lowest signal voltage at this input, at which the amplifier is able to provide normal nominal power values (see "Power per channel (8Ω)"). This parameter determines, first of all, the requirements for the signal source. On the one hand, the voltage provided by this source must not be lower than the input sensitivity of the amplifier, otherwise the latter simply will not give the claimed characteristics. However, a significant excess in voltage should not be allowed, otherwise the sound will begin to be distorted. More detailed recommendations on choosing an amplifier by sensitivity are described in special sources.

For any input other than optical, it is believed that the higher this indicator, the less distortion the amplifier introduces into the signal. The minimum level of input impedance in modern models is considered to be 10 kOhm, and in high-end devices it can reach several hundred kOhm.

REC output

The signal level and dynamic resistance (impedance) at the REC output provided in the amplifier.

This output is intended for connection to a recording device. For details, see "REC (to a recording device)"; here we note that the output signal level must be no less than the input sensitivity of the connected device, otherwise the recorded sound will turn out to be too quiet.

The design of modern amplifiers is such that this parameter primarily determines how efficiently the entire circuit works with a low-resistance load: the lower the output impedance, the easier it is to provide the necessary power at such a load. The standard value today is actually 1 kΩ (at 1 kHz); this, usually, is sufficient for most tasks solved by Hi-Fi and Hi-End class amplifiers. The need for other values arises only in special cases; for their description it is worth referring to specialized sources.

The features of the REC output are described in detail in "REC (to a recording device)" below.

Preout

Signal level and dynamic impedance provided by the device at the preamplifier output (see "Outputs" for details).

The signal level must not be lower than the sensitivity of the power amplifier (see "Type") to which the signal is received — otherwise the power amplifier will not be able to provide a normal signal level already at its outputs.

Dynamic resistance (impedance) of the preamplifier output. This value is exactly the same as the input impedance of the REC output — see the relevant paragraph above. For more information about the exit itself, see "Exits".
Rotel A12 often compared
Yamaha A-S301 often compared