Dark mode
USA
Catalog   /   Sound & Hi-Fi   /   Speakers

Comparison Magnat ATM 202 vs Jamo S 8 ATM

Add to comparison
Magnat ATM 202
Jamo S 8 ATM
Magnat ATM 202Jamo S 8 ATM
Outdated ProductOutdated Product
TOP sellers
Main
Speakers for Dolby Atmos
Featuresaudio system expansionaudio system expansion
Mountshelfshelf
Specs
Typepassivepassive
Number of channels2.0 system2.0 system
Number of speakers22
Number of bands22
Sensitivity88 dB85 dB
Impedance6 Ohm8 Ohm
Power / frequency
Front20 W/channel
Maximum amplifier power100 W
Total rated power50 W40 W
Overall frequency range50 – 36000 Hz108 – 20000 Hz
General
Tweeter size25 mm
Woofer size (LF/MF)102 mm
Finishing materialMDF
Front speaker dimensions (HxWxD)152x190x280 cm18х19х24 cm
Weight6.4 kg
Color
Added to E-Catalogfebruary 2021october 2017

Sensitivity

Speaker sensitivity.

This characteristic is indicated on the basis of how loud the acoustics are capable of producing when a signal of a certain standard power is applied to it. Simply put, the higher the sensitivity of the speaker, the louder it will sound at the same output power of the amplifier. Thus, sensitive acoustics can be effectively used even in combination with relatively low-power "amplifiers". On the other hand, low sensitivity also has its advantages: it allows you to achieve a more uniform frequency response and reduces the likelihood of overloading the amplifier. In the least sensitive modern speakers, this indicator does not exceed 84 dB, in the most sensitive it is 95 – 96 dB or more.

Note that in fact, you have to pay attention to this parameter when acoustics are planned to be used with a separately selected power amplifier. Therefore, for active systems (see "Type"), sensitivity is purely a reference value, and, usually, it can be ignored when choosing.

Impedance

Impedance is the nominal electrical impedance of a speaker system. Nowadays, a set of standard impedance values are used; the most widely used speakers are 4 ohms, 6 ohms, 8 ohms and 16 ohms.

This parameter is of primary importance for passive acoustics (see "Type"). When connecting such speakers to a power amplifier, it is highly desirable that their impedance matches the speaker impedance for which the amplifier is designed; in case of a mismatch, either overload and distortion in sound (if the speaker impedance is below optimal), or a decrease in power (in the opposite case), are possible.

As for active acoustics, here the impedance is mainly of reference value — the speakers in such systems are initially selected for the corresponding amplifiers. However there is an opinion that a higher resistance reduces the level of interference and has a positive effect on the purity of the sound; however, the difference in impedance between different models is usually not so great that this effect is noticeable against the background of other factors that determine sound quality.

Front

Rated power of one front speaker. See "Total Power Rating" below for details on power rating. Here we note that the higher the power, the louder the system component can sound — of course, with a properly selected amplifier. In addition, this parameter is very important for matching with the amplifier: it is desirable that the output power on the corresponding amplifier channel be less than the power of the speaker. If the incoming signal is more powerful, distortions in the sound and even damage to the speakers are possible, and if it is weaker, then the sound volume will decrease (in other words, it will not be possible to use the full potential of the acoustics), but this moment will be critical only for listening at maximum volume.

Maximum amplifier power

The highest power rating of an amplifier that the loudspeakers can handle safely. Too much input power can damage the speakers, so when connecting, make sure that the amplifier's characteristics do not exceed the capabilities of the speakers. It is worth noting that this parameter may be slightly higher than the total nominal power of the acoustics (see below), since in this case we are only talking about the safety of the equipment, and not about the absence of distortion in the sound.

Total rated power

The total rated power of all speaker components, in other words, the sum of the powers of all speakers. As a nominal one, they usually indicate the highest average (rms) power at which acoustics can operate for a long time without overloads and damage. In this case, individual power surges can significantly exceed this value, however, it is the rated power that is the main characteristic of any speaker.

First of all, the sound volume depends on this characteristic: the more powerful the speakers, the louder the sound they can produce if there is a suitable amplifier. In addition, in passive and passive-active models, compatibility with an external amplifier also depends on the power: the output power of the “amplifier” should not exceed the power of the acoustics connected to it, otherwise overloads and even breakdowns are possible.

Detailed recommendations regarding the choice of speakers for power for a particular situation can be found in special sources. However, in general, an indicator of up to 100 W by the standards of modern acoustics is considered quite modest, 100 – 200 W — average, 200 – 300 W — above average, and the most powerful sets give out up to 500 W or even more.

In conclusion, we note two more nuances. Firstly, when comparing different systems according to this ch...aracteristic, one must also take into account the sound format in which they work. In particular, if there is a subwoofer, it can account for a significant part of the total power — up to half or more. As a result, for example, a 2.1 set of 50 W with a 20-watt subwoofer at the main frequencies will not be able to pull out the same volume as a 40-watt 2.0 system: in the first case, each main channel will have only 15 watts, in the second — 20 watts. Secondly, in multichannel systems, the total power can be distributed among the channels in different proportions; so, say, two 5.1 systems with the same total power can differ markedly in front and rear balance at maximum volume.

Overall frequency range

The total frequency range that the speaker is capable of reproducing. Specified from the bottom of the range in the lowest frequency component to the top of the range in the highest frequency: for example, in a 2.1 system with main speakers at 100 – 22000 Hz and a subwoofer at 20 – 150 Hz, the total value will be 20 – 22000 Hz.

The wider the frequency range — the fuller the reproduced sound, the lower the likelihood that some part of the low or high frequencies will be "cut off". It is worth noting here that the human ear perceives frequencies on average from 16 Hz to 22 kHz, and from a practical point of view, it makes no sense to provide a wider frequency range in speakers. However, quite a few models go beyond this range, sometimes quite significantly (for example, there are speakers with a range of about 10 – 50,000 Hz). Such characteristics are a kind of "side effect" of high-end acoustics, and they are usually given for advertising purposes.

Thus, the lower limit of the range in modern speakers can be within frequencies up to 20 Hz, however, higher values \u200b\u200bare more common — 30 – 40 Hz, 40 – 50 Hz, or even more than 70 Hz. In turn, the upper limit in most modern speakers lies in the range 19 – 22 kHz, although there are deviations both upwards (see above) and downwards.

Tweeter size

The diameter of the tweeter (speakers) speakers. Since size primarily affects the range of the speaker (as the diameter increases, the operating frequencies decrease), in HF components it can be quite small. More detailed information can be found in special sources.

Woofer size (LF/MF)

The diameter of the woofer or combined woofer/midrange speaker(s). The larger the speaker, the lower its operating frequencies and the more sound power it can provide. Therefore, you should pay special attention to this parameter if you want to get high-quality rich bass - especially if we are talking about an audio system without a subwoofer. More detailed information about speaker sizes can be found in special sources.

Finishing material

The material from which the cabinets of the speakers included in the speakers are made. Not only the appearance, but also the sound characteristics depend on this parameter. The most common options are:

MDF(Medium Density Fiberboard — medium density fibreboard). The most popular material today, found in almost all price categories. At a rather low price, MDF has good acoustic characteristics, almost as good as natural wood.

Tree. Wood can be classified as a premium material: it looks nicer than MDF, but in terms of acoustic properties it does not have significant advantages, but is noticeably more expensive. Because of this, this material is found mainly among high-end speakers designed for demanding users.

Plastic. Plastic is low cost and easy to process. Its acoustic properties are worse than those of MDF and, moreover, wood; however, this shortcoming can be easily compensated for. So such cases are very popular nowadays, they are found even in high-end speakers.

Metal. Most often, metal speaker cabinets are made of aluminium alloys. This provides an elegant appearance, in addition, such cases are very durable, reliable and are not afraid of scratches, dirt and moisture. On the other hand, metal is not cheap, and in some models it gives the sound a specific coloration that may not be to every...one's liking. To eliminate this effect, various design tricks can be applied, which, again, additionally affect the cost.

Note that for systems with a subwoofer (2.1, 5.1, etc., see “Number of channels”), this parameter specifies the material of the main speakers, while the subwoofer is in most cases made of MDF.