USA
Catalog   /   Computing   /   Gaming & Entertainment   /   VR Headsets

Comparison BOBOVR Z6 vs HTC Vive

Add to comparison
BOBOVR Z6
HTC Vive
BOBOVR Z6HTC Vive
from $24.60 
Outdated Product
Compare prices 7
TOP sellers
Main
Support for all PC games.
Compatibilityfor smartphonePC / game console
Specs
Max. phone screen size6.2 "
Screen resolution
2160x1200 px /1080x1200 by eye/
Field of view110 °110 °
Refresh rate90 fps
Accelerometer
Gyroscope
Lens distance adjusting
Pupillary distance adjustment
Multimedia
USB A
microUSB
DisplayPort+
HDMI+
Bluetoothv 4.1
Headphones
General
Magnetic button
Track camera
Battery capacity350 mAh
Materialplasticplastic
Weight420 g
Added to E-Catalogjuly 2019july 2016

Compatibility

The general purpose of the glasses is specified based on which device they are to be used with:

For PC/Console. Glasses connected during operation to an external device and receiving a video signal from this device. Most often, it is supposed to be connected to a computer or game console, but there are models that can be connected to mobile gadgets, drones, etc. In general, they provide a good compromise between accessibility and functionality, and besides, quite advanced graphics can be displayed on such glasses. On the other hand, for the full use of such models, powerful video cards are often required.

For a smartphone. Models designed to turn a smartphone into a virtual reality device. To do this, the smartphone is installed in a special slot on the glasses so that its screen is turned towards the user's eyes; glasses themselves do not have screens. And the effect of virtual reality is achieved through the operation of smartphone sensors and (accelerometer, gyroscope) and the use of special applications created specifically for this format of work. The key advantage of glasses of this type is simplicity and low cost: most often these are purely mechanical devices, without built-in electronics (and even advanced models with additional hardware are much cheaper than other types of glasses). On the other hand, the quality of virtual reality directly depends on the capabilities o...f the smartphone, despite the fact that not all devices correctly process such content. In addition, the glasses must be compatible with the smartphone being used, and this is not always guaranteed (for more details, see “Maximum phone size”).

For quadcopter (FPV goggles). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Standalone device. Points that function completely autonomously and do not require the use of external devices. To do this, the design provides for its own processor, "RAM", video adapter, drive for storing content and a battery for power. Thus, with such a gadget, virtual reality becomes available literally anywhere in the world; and at a cost, such glasses are comparable to models for PC / consoles. On the other hand, the capabilities of stand-alone devices are noticeably more modest: the relatively low power of video adapters does not allow for the same advanced graphics as on PCs or consoles, the amount of internal memory is usually small, and the continuous operation time is limited by battery charge.

For quadcopter (FPV glasses). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Max. phone screen size

The largest diagonal of a smartphone compatible with the corresponding glasses (see "Intended use"). Note that this parameter can be specified both for universal models that do not have specialization for specific mobile phones, and for gadgets for specific devices (for more details, see "Compatible phone models"). The maximum diagonal is connected both with the features of the optics and with the physical dimensions of the "seat" for a mobile phone — a gadget that is too large simply does not fit there.

Note that even the smallest glasses for smartphones work quite correctly with devices with a diagonal of 5 – 5.5 ". So it makes sense to pay attention to this parameter if your device has a larger screen size. Nowadays, you can find glasses for gadgets 5.6 – 6 " and even 6" or more.

Screen resolution

Resolution of built-in displays in glasses equipped with such equipment — that is, models for PC / consoles, as well as standalone devices (see "Intended use").

The higher the resolution, the more smooth and detailed the “picture” is given out by glasses, all other things being equal. Thanks to the development of technology nowadays, models with Full HD (1920x1080) screens and even higher resolutions are not uncommon. On the other hand, this parameter significantly affects the cost of points. In addition, it is worth remembering that in order to fully work with high-resolution displays, you need powerful graphics capable of playing relevant content. In the case of glasses for PCs and set-top boxes, this puts forward corresponding requirements for external devices, and in standalone models you have to use advanced integrated video adapters (which affects the cost even more).

Refresh rate

The refresh rate supported by the glasses' built-in screens, in simple terms, is the maximum frame rate that the screens are capable of delivering.

Recall that screens are provided in models for PC / consoles and in stand-alone devices (see "Intended use"). And the quality of the picture directly depends on this indicator: other things being equal, a higher frame rate provides a smoother image, without jerks and with good detail in dynamic scenes. The flip side of these benefits is an increase in price.

It is also worth considering that in some cases the actual frame rate will not be limited by the capabilities of the glasses, but by the characteristics of the external device or the properties of the content being played. For example, a relatively weak PC graphics card may not be able to pull out a high frame rate signal, or a certain frame rate may be set in the game and not provide boosting. Therefore, you should not chase after large values and points with a frequency of 90 fps will be enough.

Accelerometer

Presence in points of own built — in accelerometer.

The accelerometer is a sensor that records the accelerations that the device is subjected to. It performs two main functions: determines the position of the glasses relative to the horizon (in the direction of gravity) and monitors jerks and tremors (however, this function is secondary in VR glasses). Such a sensor is necessary for a full-fledged "immersion" in virtual reality, so it must be provided in glasses made in the form of independent devices (see "Intended use"). But models for PC / consoles may not be equipped with an accelerometer — this means that the glasses are not designed for classic VR, but for more specific tasks (for example, controlling a drone with a first-person view).

As for models for smartphones, most of them do not have this function, since all modern smartphones are equipped with accelerometers. However, there are exceptions — high-end models designed for specific devices: in them, the accelerometer can work in conjunction with a smartphone sensor, which ensures the most accurate image positioning.

Gyroscope

The presence in the glasses of its own built-in gyroscope.

The gyroscope captures the direction, speed, and angle of rotation of the device—usually along all three axes. Without such a sensor, it is impossible to achieve a full-fledged "immersion" in virtual reality, so it is available in all standalone glasses, as well as in most models for PC / consoles (see "Intended use"). In the second case, the only exceptions are individual models with a specific purpose — "personal cinemas", glasses for piloting drones, etc. In turn, glasses for smartphones do not initially require gyroscopes, since smartphones themselves have such sensors. However, there are exceptions here too — advanced models created for specific top-level devices: in them, the built-in gyroscope works in conjunction with the gyroscope of the connected smartphone, ensuring maximum positioning accuracy.

USB A

The glasses must have at least one USB A connector. This is a full-sized USB connector, the same type as standard USB ports on computers and laptops. But its functions may be different, depending on the functionality of the glasses (see "Purpose"). So, in models for PCs and consoles, USB is one of the connection connectors used in conjunction with a video interface such as HDMI or DisplayPort: an image is transmitted via a video connector, and data from sensors on glasses is transmitted via a USB connection, which is necessary to change the picture and create " immersion effect. And in independent devices, USB A is used to connect various additional accessories — for example, flash drives with applications or other content. It is also possible to use this connector to charge the battery, although this method of use in general is not typical for it.

microUSB

The presence of a microUSB connector in the glasses. This is the most popular of the smaller versions of the USB connector, widely used primarily in portable technology. However, for a number of reasons, this interface is rarely found in VR glasses — in single models of glasses for a smartphone, as well as in some independent devices (see "Purpose"). In both cases, it is provided mainly for charging the built-in battery (glasses for smartphones can also have such power — for example, for the operation of built-in Bluetooth headphones).

DisplayPort

Availability of DisplayPort input in glasses; the version of this interface can also be specified here.

DisplayPort is one of the most popular high-resolution digital video interfaces these days (however, audio transmission is also possible). It is especially common in computer technology, and is actually a standard in Apple PCs and laptops. Only glasses for computers and set-top boxes are equipped with this type of input (see “Purpose”) - it is used to receive a video signal (and audio signal, if necessary) from an external device. As for DisplayPort versions, the options here could be:

- v.1.2. The earliest (2010) version that is relevant today, but at the same time a more than functional version. Fully supports video quality up to 5K (30 fps), and with certain restrictions - up to 8K.
- v.1.3. Update released in 2014. It provided the opportunity to fully work with 8K resolutions at 30 fps, and with 4K and 5K at 120 and 60 fps, respectively.
- v.1.4. Updated in 2016, in which the bandwidth was further increased - up to support for 5K video at 240 fps and 8K at 120 fps. In addition, there is compatibility with HDR 10 technology, which improves color reproduction and overall picture quality.
BOBOVR Z6 often compared
HTC Vive often compared