USA
Catalog   /   Computing   /   Gaming & Entertainment   /   VR Headsets

Comparison DJI Goggles vs VR Shinecon

Add to comparison
DJI Goggles
VR Shinecon
DJI GogglesVR Shinecon
Compare prices 2
from $13.56
Outdated Product
TOP sellers
Main
Viewing the picture from the camera on board the quadcopter in the first person. High resolution image. Controlling the camera by turning the head. Touchpad on the right side of the case.
Compatibility
for quadcopter (FPV) /2x5"/
for smartphone
Specs
Max. phone screen size6 "
Screen resolution
1920x1080 px /every screen/
Field of view
85 ° /every screen/
Refresh rate60 fps
Accelerometer
Gyroscope
Proximity sensor
Lens distance adjusting
Pupillary distance adjustment
General
Controlpush-button
Materialplasticplastic
Dimensions (HxWxD)255x205x92 mm100x200x140 mm
Weight500 g380 g
Added to E-Catalogseptember 2017september 2016

Compatibility

The general purpose of the glasses is specified based on which device they are to be used with:

For PC/Console. Glasses connected during operation to an external device and receiving a video signal from this device. Most often, it is supposed to be connected to a computer or game console, but there are models that can be connected to mobile gadgets, drones, etc. In general, they provide a good compromise between accessibility and functionality, and besides, quite advanced graphics can be displayed on such glasses. On the other hand, for the full use of such models, powerful video cards are often required.

For a smartphone. Models designed to turn a smartphone into a virtual reality device. To do this, the smartphone is installed in a special slot on the glasses so that its screen is turned towards the user's eyes; glasses themselves do not have screens. And the effect of virtual reality is achieved through the operation of smartphone sensors and (accelerometer, gyroscope) and the use of special applications created specifically for this format of work. The key advantage of glasses of this type is simplicity and low cost: most often these are purely mechanical devices, without built-in electronics (and even advanced models with additional hardware are much cheaper than other types of glasses). On the other hand, the quality of virtual reality directly depends on the capabilities o...f the smartphone, despite the fact that not all devices correctly process such content. In addition, the glasses must be compatible with the smartphone being used, and this is not always guaranteed (for more details, see “Maximum phone size”).

For quadcopter (FPV goggles). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Standalone device. Points that function completely autonomously and do not require the use of external devices. To do this, the design provides for its own processor, "RAM", video adapter, drive for storing content and a battery for power. Thus, with such a gadget, virtual reality becomes available literally anywhere in the world; and at a cost, such glasses are comparable to models for PC / consoles. On the other hand, the capabilities of stand-alone devices are noticeably more modest: the relatively low power of video adapters does not allow for the same advanced graphics as on PCs or consoles, the amount of internal memory is usually small, and the continuous operation time is limited by battery charge.

For quadcopter (FPV glasses). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Max. phone screen size

The largest diagonal of a smartphone compatible with the corresponding glasses (see "Intended use"). Note that this parameter can be specified both for universal models that do not have specialization for specific mobile phones, and for gadgets for specific devices (for more details, see "Compatible phone models"). The maximum diagonal is connected both with the features of the optics and with the physical dimensions of the "seat" for a mobile phone — a gadget that is too large simply does not fit there.

Note that even the smallest glasses for smartphones work quite correctly with devices with a diagonal of 5 – 5.5 ". So it makes sense to pay attention to this parameter if your device has a larger screen size. Nowadays, you can find glasses for gadgets 5.6 – 6 " and even 6" or more.

Screen resolution

Resolution of built-in displays in glasses equipped with such equipment — that is, models for PC / consoles, as well as standalone devices (see "Intended use").

The higher the resolution, the more smooth and detailed the “picture” is given out by glasses, all other things being equal. Thanks to the development of technology nowadays, models with Full HD (1920x1080) screens and even higher resolutions are not uncommon. On the other hand, this parameter significantly affects the cost of points. In addition, it is worth remembering that in order to fully work with high-resolution displays, you need powerful graphics capable of playing relevant content. In the case of glasses for PCs and set-top boxes, this puts forward corresponding requirements for external devices, and in standalone models you have to use advanced integrated video adapters (which affects the cost even more).

Field of view

The viewing angle provided by virtual reality glasses is the angular size of the space that falls into the user's field of view. Usually, the characteristics indicate the size of this space horizontally; however, if you need the most accurate information, this point needs to be specified separately.

The wider the viewing angle — the more the game space the user can see without turning his head, the more powerful the immersion effect and the less likely that the image will be subject to the "tunnel vision" effect. On the other hand, making the field of view too wide also does not make sense, given the characteristics of the human eye. In general, a large viewing angle is considered to be an angle of 100° or more. On the other hand, there are models where this indicator is 30° or even less — these are, usually, specific devices (for example, drone piloting glasses and augmented reality glasses), where such characteristics are quite justified given the overall functionality.

Refresh rate

The refresh rate supported by the glasses' built-in screens, in simple terms, is the maximum frame rate that the screens are capable of delivering.

Recall that screens are provided in models for PC / consoles and in stand-alone devices (see "Intended use"). And the quality of the picture directly depends on this indicator: other things being equal, a higher frame rate provides a smoother image, without jerks and with good detail in dynamic scenes. The flip side of these benefits is an increase in price.

It is also worth considering that in some cases the actual frame rate will not be limited by the capabilities of the glasses, but by the characteristics of the external device or the properties of the content being played. For example, a relatively weak PC graphics card may not be able to pull out a high frame rate signal, or a certain frame rate may be set in the game and not provide boosting. Therefore, you should not chase after large values and points with a frequency of 90 fps will be enough.

Accelerometer

Presence in points of own built — in accelerometer.

The accelerometer is a sensor that records the accelerations that the device is subjected to. It performs two main functions: determines the position of the glasses relative to the horizon (in the direction of gravity) and monitors jerks and tremors (however, this function is secondary in VR glasses). Such a sensor is necessary for a full-fledged "immersion" in virtual reality, so it must be provided in glasses made in the form of independent devices (see "Intended use"). But models for PC / consoles may not be equipped with an accelerometer — this means that the glasses are not designed for classic VR, but for more specific tasks (for example, controlling a drone with a first-person view).

As for models for smartphones, most of them do not have this function, since all modern smartphones are equipped with accelerometers. However, there are exceptions — high-end models designed for specific devices: in them, the accelerometer can work in conjunction with a smartphone sensor, which ensures the most accurate image positioning.

Gyroscope

The presence in the glasses of its own built-in gyroscope.

The gyroscope captures the direction, speed, and angle of rotation of the device—usually along all three axes. Without such a sensor, it is impossible to achieve a full-fledged "immersion" in virtual reality, so it is available in all standalone glasses, as well as in most models for PC / consoles (see "Intended use"). In the second case, the only exceptions are individual models with a specific purpose — "personal cinemas", glasses for piloting drones, etc. In turn, glasses for smartphones do not initially require gyroscopes, since smartphones themselves have such sensors. However, there are exceptions here too — advanced models created for specific top-level devices: in them, the built-in gyroscope works in conjunction with the gyroscope of the connected smartphone, ensuring maximum positioning accuracy.

Proximity sensor

The presence of a sensor in the glasses that reacts to approaching the user's face.

A similar sensor is used to automatically switch between operating and standby modes: for example, when the user takes off the glasses, the sensor turns off the built-in screens (or the phone, if it is connected to the glasses via a connector), saving battery power and equipment life, and when put on, it turns on points for full functionality.

Pupillary distance adjustment

The ability to adjust the interpupillary distance of glasses — that is, the distance between the centers of two lenses. To do this, the lenses are mounted on movable mounts that allow them to be moved to the right / left. The meaning of this feature is that for normal viewing, the centers of the lenses must be opposite the user's pupils — and for different people, the distance between the pupils is also different. Accordingly, this setting will be useful anyway, but it is especially important for users of a large or petite physique, whose interpupillary distance is noticeably different from the average.

At the same time, there is a fairly significant number of glasses that do not have this function. They can be divided into three categories. The first is devices where the lack of adjustment for the interpupillary distance is compensated in one way or another (for example, by a special form of lenses that does not require adjustment). The second is models where this adjustment is not needed in principle (in particular, some augmented reality glasses). And the third — the simplest and cheapest solutions, where additional adjustments were abandoned to reduce the cost.
DJI Goggles often compared
VR Shinecon often compared