USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Hi-Fi Receivers

Comparison Yamaha R-S202 vs Harman Kardon HK 3390

Add to comparison
Yamaha R-S202
Harman Kardon HK 3390
Yamaha R-S202Harman Kardon HK 3390
Compare prices 14
from $530.00
Outdated Product
TOP sellers
Typereceiverreceiver
Tech specs
Frequency range
10 – 100000 Hz /± 0.5 дБ/
20 – 20000 Hz
Power per channel (8Ω)100 W80 W
Permissible speaker impedance (Ω)2 Ohm
Signal to noise ratio (RCA)100 dB95 dB
Features
Adjustments
bass control
treble adjustment
balance adjustment
bass control
treble adjustment
balance adjustment
More features
Multi Zone
Multi Zone
Connectors
Inputs
 
 
 
 
to amplifier (Main)
Phono
composite (video) /4/
control input (IR)
RCA4 pairs6 pairs
Outputs
 
 
 
 
 
Pre-Amp
to subwoofer /2/
composite (video) /2/
trigger /2/
control output (IR)
REC (to recorder)1 pairs2 pairs
On headphones6.35 mm (Jack)
General
Sleep timer
Remote control
Power output2 шт
Power consumption175 W230 W
Dimensions (WxDxH)435x322x141 mm440х382х165 mm
Weight6.7 kg9.5 kg
Color
Added to E-Catalogseptember 2016december 2014

Frequency range

The range of audio frequencies that the audio receiver can handle. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.

Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to specifically look for a receiver with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.

Power per channel (8Ω)

The nominal sound power output by the audio receiver per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when both channels of the receiver work under load; when working on one channel, the rated power may be slightly higher, but this mode cannot be called standard.

Rated power can be simply described as the highest average output signal power at which the amplifier is able to operate stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, an audio signal is, by definition, unstable, and individual jumps in its level can significantly exceed the average value. However, the key parameter is still the nominal (average) power — it is on it that the overall sound volume directly depends.

This indicator also determines which speakers can be connected to the device: their rated power should not be lower than that of the receiver.

According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, values of 8, 6, 4 and 2 ohms are standard; the latter option, however, is rare, therefore, in audio receivers, the power for it, usually, is not indicated at all. As for the specific values for 8 ohms, the indicator up to 50 W is considered relatively low, 50 – 100 W is average, and with more than 100 W we can talk about high power.

Permissible speaker impedance (Ω)

The lowest speaker impedance that the audio receiver can handle normally.

The nominal impedance of the speakers, also referred to as the term "impedance", is one of the key parameters in the selection of audio system components: for normal operation, it is necessary that the speaker impedance match the characteristics of the amplifier. If the speaker impedance is greater, the sound volume will decrease significantly, if it is less, distortion will appear in it, and in the worst case, even overloads and breakdowns are possible. Therefore, in the characteristics of receivers, it is usually the minimum resistance that is indicated — after all, connecting a load of too low impedance is fraught with more serious consequences than too high.

Signal to noise ratio (RCA)

Signal-to-noise ratio when operating the audio receiver through the RCA line input (see below).

Any signal-to-noise ratio describes the ratio of the level of pure sound produced by the device to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of up to 90 dB in modern receivers can be considered acceptable, 90 – 100 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of 100 dB or more is considered mandatory.

Inputs

mini-Jack (3.5 mm). A standard connector widely used in modern audio equipment and other electronics, mostly portable. Technically, the mini-Jack input can be used for different types of signal, but in fact in audio receivers it most often plays the role of a line interface and is mainly used to connect the mentioned portable equipment — for example, audio players.

Amplifier input (Main). An input designed to connect an external source directly to the power amplifier (in fact, in By-pass / Direct mode, see "Communications"). In different models, the Main inputs may differ in the type of interface, most often either RCA (“tulip”) or XLR is used. The first option is extremely widespread in modern high-end audio equipment due to its low cost, simplicity and good connection quality, however, in terms of signal purity and resistance to interference (especially when working with long wires), it still loses to XLR. It is also worth noting that “tulip” connectors can also be used for the main line input — see “RCA” for details; do not confuse this input with Main (especially since they may differ in technical parameters — for example, input impedance).

Phono. Special input for connecting turntables; often has a suffix indicating the type of cartridge that is compatible, such as "Phono MM" or "Phono MM/MC". A feature of "...vinyl" is that the sound coming from the pickup must be passed through a phono stage. Actually, the presence of the Phono input just means that the receiver is equipped with a built-in phono stage and you can connect a “turntable” directly to it, without additional equipment.

— XLR (balanced). Audio line input using balanced connection via XLR — characteristic round 3-pin plug; one input consists of a pair of these connectors, for the left and right stereo channels. A feature of a balanced connection is that the XLR cable itself dampens external interference coming to it; and the connector provides tight contact and is often supplemented with a retainer for reliability. All this allows you to achieve high quality connections and maximum purity of sound, even when using long wires. However, such inputs are rare — this is due not so much to their shortcomings, but to the fact that audio receivers are rarely used as linear balanced audio receivers.

— Coaxial S/P-DIF. A kind of S/PDIF digital audio interface that uses an electrical coaxial cable with RCA connectors (“tulip”) for connection. Such a cable, unlike optical (see below), is subject to electromagnetic interference to a certain extent, but is more reliable and does not require special care in handling. And the connection bandwidth is enough to transmit multi-channel audio up to 7.1. Note that despite the identical connectors, the coaxial digital interface is not compatible with analogue RCA (see below); and even cables for S / P-DIF are recommended to use specialized ones.

— Optical. A variation of the S/PDIF digital audio interface that uses a TOSLINK fiber optic cable connection. In terms of bandwidth, it is completely similar to the coaxial interface (see above), but it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — for example, accidentally stepping on such a cable can damage it.

— Balanced digital (AES/EBU). An interface used primarily in professional audio equipment. It can use different types of connectors, but is most often implemented via XLR. For more information about this connector and the principle of balanced connection, see "XLR (balanced)", but do not confuse these two interfaces: AES / EBU works with a digital signal transmitted over a single cable, regardless of the number of channels.

— Composite (video). An input for connecting a composite video signal. Uses the same RCA connector as many audio inputs, but is most often highlighted in yellow. The signal is transmitted in analogue format, via a single cable, which simplifies the connection, but limits the bandwidth; because of this, this standard is not suitable for working with HD. Nevertheless, it is very popular in modern video technology, in addition, it is found even in outdated devices (like VHS VCRs). Note that composite audio inputs are not provided in modern audio receivers — their role is played by standard RCA line inputs (see below).

— BNC. Bayonet type connector used to connect coaxial cable. Theoretically, it can be used for various purposes, but in fact it is most often used similarly to coaxial S / P-DIF, for digital analogue audio. BNC connectors are more reliable in connection due to the bayonet lock; there is also a version with a threaded fixation.

— Trigger. Service input that allows the receiver to turn on and off at the same time as other components of the audio system. Such an input is connected to the trigger output of a control device (for example, an amplifier), and when this device is turned on and off, a control signal is sent to the receiver. This eliminates the need for the user to separately manage the power on of each device.

— Control input (IR). Connector for connecting an external infrared remote control receiver. Such a receiver can be useful in cases where the signal from the remote control does not reach the built-in IR sensor of the receiver. Note that other components of the system that are compatible with the remote control and have IR control outputs, for example, players or tuners, can play the role of an external sensor.

RCA

The number of line inputs in the design of the audio receiver using the RCA interface are characteristic “tulip” connectors. This interface allows for an analogue connection to transmit only one channel of sound per connector, and audio receivers traditionally work with stereo sound. Therefore, it is customary to consider a pair of two RCA connectors (one for the left and right channels) as one output, and the calculation of the total number is carried out precisely by pairs, and not by individual sockets.

When connected to a line input, the signal goes through all the stages of processing provided in the device — for example, adjusting the balance or frequencies (see "Adjustments"). In this respect, this input differs from Main (see "Inputs"). The number of connectors determines how many signal sources can be simultaneously connected to the audio receiver. Accordingly, it is worth choosing a model according to the number of inputs, taking into account the expected number of such sources: after all, it is easier to connect them all and select through the remote control or control panel than to fiddle with reconnecting every time. As for the specific number of RCA inputs, most often it does not exceed three, however, there are exceptions.

Outputs

Outputs provided in the design of the device. Note that for receivers (see "Type") the presence of outputs for passive acoustics is mandatory by definition, and the players, on the contrary, do not have such outputs. Therefore, the presence / absence of such connectors is not separately indicated.

Preamplifier output (Pre-Amp). A preamplifier is an electronic unit designed to amplify an audio signal to line level. Accordingly, outputs of this type are actually line outputs for outputting sound to an external power amplifier, active acoustics, etc. For players (see "Type"), these are the main analogue audio outputs, and in receivers, Pre-amp outputs can be used in including for connecting equipment that works in parallel with passive speakers, which provides additional features for expanding the audio system. Most often, this interface uses paired RCA connectors (“tulips”), one for each stereo sound channel; less often — balanced XLR, also paired, for more details see "Inputs".

To the subwoofer. A separate output for connecting a subwoofer — a specialized speaker designed for low frequencies. Usually uses an RCA ("tulip") interface, but there may be other options. Anyway, this output receives the signal from the crossover, which "cuts" the mids and highs, leaving the bass with which the speaker works. This simplifies the connection and eliminates the need to look for external equipm...ent for the normal operation of the subwoofer — for example, the same crossover (although an external amplifier may be needed for passive "subwoofers").

— Coaxial S/P-DIF. A kind of S/PDIF digital audio interface that uses an electrical coaxial cable with RCA connectors (“tulip”) for connection. Such a cable, unlike optical, is subject to electromagnetic interference to a certain extent, but is more reliable and does not require special care in handling. And the connection bandwidth is enough to transmit multi-channel audio up to 7.1. Note that, despite the identity of the connectors, the coaxial digital interface is not compatible with analogue RCA; and even cables for S / P-DIF are recommended to use specialized ones.

— Optical. A variation of the S/PDIF digital audio interface that uses a TOSLINK fiber optic cable connection. In terms of throughput, it is completely similar to the coaxial interface, but it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — for example, accidentally stepping on such a cable can damage it.

— Balanced digital (AES/EBU). An interface used primarily in professional audio equipment. It can use different types of connectors, but is most often implemented via XLR. For more information about this connector and the principle of balanced connection, see “Inputs — XLR (balanced)”, however, these two interfaces should not be confused: AES / EBU works with a digital signal transmitted over a single cable, regardless of the number of channels.

— Composite (video). This output is usually provided in models equipped with a video input of the same standard. For composite connectors in general, see "Inputs". Here also note that the role of composite audio outputs in this case is played by the main outputs of the receiver, to which acoustics are connected — in other words, the sound accompanying the video is output directly to the standard speakers of the audio system.

— BNC. Bayonet type connector used to connect coaxial cable. Theoretically, it can be used for various purposes, but in fact it is most often used similarly to coaxial S / P-DIF (see the relevant paragraph), for digital analogue audio. BNC connectors are more reliable in connection due to the bayonet lock; there is also a version with a threaded fixation.

— Trigger. The trigger output is used to automatically turn on other audio system components connected to the receiver. When the receiver itself is turned on, a control signal is sent to this output, which “wakes up” the connected device (for example, an amplifier) and relieves you of the need to turn it on manually. Of course, to use this function, the external device must be equipped with a trigger input.

— Control output (IR). The control output allows you to use the receiver's built-in IR receiver to control other components in your audio system from the remote control, such as an amplifier in another room, out of range of the remote control. With this scheme of operation, the audio receiver actually plays the role of a remote sensor, receiving commands and transmitting them through the control output to another device. Note that the very presence of such inputs and outputs does not guarantee the compatibility of various devices, especially if they are produced by different manufacturers; Sharing details should be clarified in the official documentation.

REC (to recorder)

The number of outputs to the recording deviceprovided in the design of the audio receiver.

Technically, the REC output is most often a traditional line interface, with a pair of RCA connectors (for left and right stereo channels — that's why such outputs are counted in pairs). The main specificity of this interface (and the difference from "ordinary" line outputs) is that the signal level on it is unchanged — this simplifies the control of recording parameters on an external device.

On headphones

The type of headphone output provided in the audio receiver.

3.5 mm (mini-Jack). This connector is very popular in modern electronics: in portable devices it is the main option for connecting headphones, and most of the headphones themselves (of all price categories) have a “native” plug for the mini-Jack. However, due to a number of technical features in Hi-Fi and Hi-End equipment, including audio receivers, this interface is not widely used.

6.35 mm (Jack). Due to its large size, this connector is used primarily in stationary equipment and is almost never found in portable gadgets. On the other hand, it is better suited for high-quality audio systems than mini-Jack; many premium headphones are produced with a Jack plug, and models with a 3.5 mm plug can be connected to a 6.35 mm jack using a simple adapter (often it is even included in the kit with the headphones themselves). As a result, most modern audio receivers use this interface.
Yamaha R-S202 often compared
Harman Kardon HK 3390 often compared