USA
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison DJI Mavic Air 2 vs DJI Inspire 1

Add to comparison
DJI Mavic Air 2
DJI Inspire 1
DJI Mavic Air 2DJI Inspire 1
Compare prices 1
from $3,698.00 
Outdated Product
TOP sellers
Main
Claimed range of 18.5 km (in FCC mode). Flight time up to 34 min. Photo-panorama 180°, spherical photography. Various automatic shooting modes. Shooting 4K 60 fps. Shooting 8K hyperlapse.
Featuresindustrial / commercial
Flight specs
Range of flight18.5 km
Maximum flight time34 min15 min
Horizontal speed68 km/h
65 km/h /80 km/year with LiPo 6S 5.7 Ah/
Ascent / descent speed
14.4 km/h /decrease – 18 km/h/
Wind impedance11 m/s
Camera
Camera typebuilt-inremovable
Matrix size1/2"1/2.3"
Aperturef/2.8
Number of megapixels48 MP12 MP
Photo resolution8000x6000 px4000x3000 px
HD filming (720p)1280x720 px
1280x720 px 60 fps /15 Mbps/
Full HD filming (1080p)1920x1080 px 240 fps
1920x1080 px 60 fps /45 Mbps/
Quad HD filming2688x1512 px 60 fps
Ultra HD (4K)
3840x2160 px 60 fps /120 Mbps/
3840x2160 px 30 fps /60 Mbps/
Viewing angles84°94°
Time lapse
Mechanical stabilizer suspension
 /ZENMUSE X3/
Camera with control
Live video streaming
Memory card slot
 /microSD up to 256 GB/
 /microSD (up to 64 GB)/
Flight modes and sensors
Flight modes
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
flyby GPS points
return "home"
 
 
 
 
 
flyby GPS points
Sensors
GPS module /GLONASS/
heights
optic
gyroscope
GPS module
heights
optic
gyroscope
Obstacle sensors
bottom
front
back
 
 
 
Control and transmitter
Controlremote control onlyremote control only
Range
18500 m /in FCC mode/
5000 m
Control frequency2.4 and 5.8 GHz2.4 and 5.8 GHz
Video transmission frequency2.4 and 5.8 GHz (Wi-Fi)
Smartphone mount
Remote control power sourcebattery
battery /LiPo 2S (6 Ah)/
Motor and chassis
Motor typebrushlessbrushless
Motor modelDJI 3510, 350KV
Number of screws4 pcs4 pcs
Screw diameter183 mm330 mm
Foldable design
Foldable chassis
Battery
Battery capacity3.5 Ah4.5 Ah
Voltage11.55 V22.8 V
Battery model3S6S
Batteries in the set1 pcs1 pcs
General
Body backlight
Materialplasticplastic
Dimensions253x183x77 mm438x451x301 mm
Dimensions (folded)180x97x84 mm
Weight570 g2935 g
Color
Added to E-Catalogapril 2020february 2015

Features

General drone specialization.

This parameter is specified in cases where the device has a clearly defined specialization and is noticeably different in equipment/functionality from conventional quadcopters for entertainment purposes. In our time, the following types of drones are distinguished: mini-drones, racing vehicles(including in the form of racing mini-drones), selfie drones, kits for battles, as well as industrial/commercial solutions. Here are the features of each of these options:

FPV drones. Quadcopters with a “First Person View” transmit the image visible to the camera in real time. Those. During such a broadcast, the operator will see on the screen the same thing that directly falls into the field of view of the lens. This can be useful for photo and video shooting from the air, more precise control of a drone, and performing a number of specific tasks for reconnaissance or military purposes. Smartphones, tablets or other similar gadgets are used to view images from the camera; there are also remote controls with built-in screens (see “Display for FPV broadcast”) and specialized masks like virtual reality glasses (see “Helmet for FPV broadcast”).

— Mini-drone. Miniature devices with dimensions of no more than 150 mm (length a...nd width) and a weight of no more than 100 g. This allows them to be easily transported from place to place, as well as to fly even in confined spaces - right up to city apartments. At the same time, many mini-drones are intended exclusively for entertainment, but there are also models with quite advanced characteristics. But the communication range of such equipment, as a rule, is quite limited (although, again, exceptions are possible); the same applies to carrying capacity.

- Racing. Devices originally created for drone racing. Such races require not only fast completion of the tracks, but also the ability to accurately fit into a given trajectory; Therefore, racing quadcopters differ not only in speed, but also in control accuracy. In addition, among such machines there may be modifications for complex aerobatics (freestyle, 3D) - in their characteristics the emphasis is even more shifted to accuracy and responsiveness. It should be borne in mind that most racing models are not only expensive, but also quite difficult to operate and are designed for experienced pilots; so it hardly makes sense to buy such a device for initial training or entertainment use.

— Racing mini-drone. A variation of the racing machines described above, characterized by reduced dimensions and having corresponding features. On the one hand, these features include ease of transportation and the ability to be used in confined spaces, on the other hand, relatively low load capacity and communication range.

— Selfie drone. Copters designed primarily for taking selfies. Among the main features of this technology are its small dimensions and the absence of a classic remote control: control is carried out either via a smartphone or using gestures through a special compact controller. This format of work eliminates the need to carry a bulky remote control and allows the operator to look natural in the frame - posing for a photo, rather than being distracted by controlling the drone. And some advanced models provide additional functions that make shooting even more convenient: face detection with autofocus and auto-centering, Follow Me mode (see “Flight Modes”), etc.

— Industrial/commercial. High-quality copters designed for professional use: photographing and video shooting from high altitudes in high resolution, “inspecting” industrial facilities and land plots, spraying fields, etc. In addition to their large dimensions, they are distinguished by a long range and flight altitude (and even and others are usually calculated in kilometers), high carrying capacity and extensive functionality. Thus, many models allow the installation of heavy advanced cameras (some are even initially designed for certain models of professional cameras), others have built-in “optics” with advanced capabilities (for example, with a high magnification factor or support for shooting in the IR range). The design usually includes a large abundance of sensors. And some models may have more specific functions - for example, detecting other aircraft nearby. Of course, such functionality is not cheap.

— Combat (battle kits). Drones designed to organize air battles. As a rule, they are sold in sets of two cars - so that the fight can be organized immediately, without purchasing anything additional; and most models allow you to organize group battles (at least “all against all”) - for this it is enough to buy several identical sets. The role of the “gun” in such a copter is usually played by an IR emitter, and hits are recorded using appropriate sensors. For control, a smartphone or other gadget is usually used, and the control application can provide very interesting and unusual functions - for example, statistics for each player with experience points received for battles, as well as special “skills” (temporary invulnerability, unusual maneuver, etc.) . p.), purchased for these points and activated by clicking on the corresponding icon in the application.

Range of flight

The distance that a quadcopter can travel in the air on one full battery charge. Simply put, this is the drone's range in kilometers. Note that smaller, lighter drones tend to have a more limited flight range compared to larger, more powerful models. In the latter, it can reach 30 km or more. Also, the maximum flight distance is often influenced by weather factors and the load carried by the copter.

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

Ascent / descent speed

The speed at which the quadcopter rises up in the air or descends to the ground. Recreational, photo and video models tend to have more moderate climb/descent speeds, while professional or racing drones can rise and fall much faster. This indicator can be used to evaluate how quickly the copter can rise to a height for filming or, if necessary, avoid obstacles, and a high descent rate will be useful if the drone needs to be returned to the ground quickly and safely.

Wind impedance

The ability of a quadcopter to maintain and maintain stable flight parameters in windy weather. In this column, it is customary to indicate the wind force in meters per second, which ensures trouble-free takeoff and landing of the drone within the permissible wind speed. Directly in flight, copters can overcome the resistance of even faster winds. But takeoffs and landings with wind strength above the designated level are fraught with unpredictable movements of the drone, loss of control and an increased risk of emergency situations.

Camera type

The type of camera installation that the quadcopter is equipped with.

- Built-in. A camera that is permanently installed on the vehicle and cannot be removed without disassembling the fuselage. This is the simplest option for tech who want to use a quadcopter for photo and video shooting or for flying with a first-person view (see “Real-time broadcast”); In addition, this camera design is considered more durable and reliable than a removable one. On the other hand, it does not make it possible to remove the camera to make the car lighter or replace it with another one that is more suitable in terms of characteristics.

- Removable. As the name suggests, such cameras are installed on detachable mounts. Thanks to this, the customer can remove or install the camera, depending on what is more important to him at the moment - the light weight of the car or the presence of an electronic “eye” on board. Note that in some models you can install not only a standard device, but also a third-party device.

- Absent. Drones that are not equipped with cameras at all fall into two main categories. The first does not involve the use of any cameras at all; As a rule, it includes inexpensive devices primarily for entertainment purposes, for which the “peephole” is just an expensive and unnecessary excess, which also increases the weight of the entire structure. The second type is models with...the ability to install a camera. It includes quite advanced copters - up to powerful professional machines capable of carrying a digital SLR. This option will be useful for tech who would like to independently select a camera to suit their needs. However, we note that the second type may have an auxiliary “eye” for live FPV broadcasts (see below); however, if such a “peephole” does not allow for taking photos/videos, it is not considered a full-fledged camera, and its presence is indicated only in additional notes. — Thermal imaging. A camera operating on the principle of a thermal imager - it detects infrared radiation from heated objects and forms a characteristic thermal image visible to the drone operator. Each color in this image corresponds to a specific temperature. A thermal imager equipped in a drone opens up possibilities not available to traditional optical cameras. Thus, it can be used to distinguish a person or animal against a camouflage background or in dense vegetation in an area. Thermal imaging cameras also “see” perfectly in complete darkness.

Quadcopters with a thermal imaging camera are by no means a cheap pleasure. They are used by rescuers, military, law enforcement, repairmen, hunters and fishermen. In particular, drones with a thermal imaging camera help find living people when clearing rubble, and are widely used to search for possible fires, gas leaks from pipelines, etc. In some situations, the performance of a thermal imager may be low - for example, it is not able to clearly identify an object if its temperature coincides with the background temperature (which makes it difficult to use in hot weather). In addition, the resolution and detail of the picture, even in advanced models, is quite modest. Thermal cameras in drones can be built-in or detachable.

Matrix size

The physical size of the photosensitive element of a camera. Measured diagonally, often indicated in fractions of an inch — for example, 1/3.2" or 1/2.3" (respectively, the second matrix will be larger than the first). Note that in such designations it is not the “ordinary” inch (2.54 cm) that is used, but the so-called "Vidiconovsky", which is less than a third and is about 17 mm. This is partly a tribute to the tradition that comes from television tubes — "vidicons" (the forerunners of modern matrices), partly — a marketing ploy that gives buyers the impression that the matrices are larger than they really are.

Anyway, for the same resolution (number of megapixels), a larger matrix means a larger size for each individual pixel; accordingly, on large matrices, more light enters each pixel, which means that such matrices have higher photosensitivity and lower noise levels, especially when shooting in low light conditions. On the other hand, increasing the diagonal of the sensor inevitably leads to an increase in its cost.

Aperture

Aperture - a characteristic that determines how much the camera lens attenuates the light flux passing through it. It depends on two main characteristics - the diameter of the active aperture of the lens and the focal length - and in the classical form is written as the ratio of the first to the second, while the diameter of the effective aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.
DJI Mavic Air 2 often compared
DJI Inspire 1 often compared