Dark mode
USA
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison JJRC X7 vs JJRC X5

Add to comparison
JJRC X7
JJRC X5
JJRC X7JJRC X5
Outdated ProductOutdated Product
TOP sellers
Main
Charging time — 1.3 hours.
Brushless motors. Many flight modes.
Flight specs
Maximum flight time23 min18 min
Camera
Camera typebuilt-inremovable
HD filming (720p)1280x720 px1280x720 px
Full HD filming (1080p)1920x1080 px 30 fps1920x1080 px
Camera stabilization
Camera with control
Live video streaming
Memory card slot
Flight modes and sensors
Flight modes
return "home"
Follow me (tracking)
Orbit mode (flying in a circle)
flyby GPS points
return "home"
Follow me (tracking)
Orbit mode (flying in a circle)
flyby GPS points
Sensors
GPS module
 
gyroscope
GPS module
heights
gyroscope
Control and transmitter
Controlremote control and smartphoneremote control and smartphone
Range600 m
Control frequency2.4 GHz2.4 GHz
Video transmission frequency5 GHz (Wi-Fi)
Smartphone mount
Information display
Remote control power sourcebattery4xAA
Motor and chassis
Motor typebrushlessbrushless
Motor model1806, 1500KV
Number of screws4 pcs4 pcs
Screw diameter185 mm152 mm
Battery
Battery capacity2.6 Ah1.8 Ah
Voltage7.6 V7.4 V
Battery model2S2S
Batteries in the set1 pcs1 pcs
USB charging
General
Body backlight
Materialplasticplastic
Dimensions271x237x76 mm350x350x95 mm
Weight410 g400 g
Color
Added to E-Catalogjuly 2019july 2019
Price comparison

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Camera type

The type of camera installation that the quadcopter is equipped with.

- Built-in. A camera that is permanently installed on the vehicle and cannot be removed without disassembling the fuselage. This is the simplest option for tech who want to use a quadcopter for photo and video shooting or for flying with a first-person view (see “Real-time broadcast”); In addition, this camera design is considered more durable and reliable than a removable one. On the other hand, it does not make it possible to remove the camera to make the car lighter or replace it with another one that is more suitable in terms of characteristics.

- Removable. As the name suggests, such cameras are installed on detachable mounts. Thanks to this, the customer can remove or install the camera, depending on what is more important to him at the moment - the light weight of the car or the presence of an electronic “eye” on board. Note that in some models you can install not only a standard device, but also a third-party device.

- Absent. Drones that are not equipped with cameras at all fall into two main categories. The first does not involve the use of any cameras at all; As a rule, it includes inexpensive devices primarily for entertainment purposes, for which the “peephole” is just an expensive and unnecessary excess, which also increases the weight of the entire structure. The second type is models with...the ability to install a camera. It includes quite advanced copters - up to powerful professional machines capable of carrying a digital SLR. This option will be useful for tech who would like to independently select a camera to suit their needs. However, we note that the second type may have an auxiliary “eye” for live FPV broadcasts (see below); however, if such a “peephole” does not allow for taking photos/videos, it is not considered a full-fledged camera, and its presence is indicated only in additional notes. — Thermal imaging. A camera operating on the principle of a thermal imager - it detects infrared radiation from heated objects and forms a characteristic thermal image visible to the drone operator. Each color in this image corresponds to a specific temperature. A thermal imager equipped in a drone opens up possibilities not available to traditional optical cameras. Thus, it can be used to distinguish a person or animal against a camouflage background or in dense vegetation in an area. Thermal imaging cameras also “see” perfectly in complete darkness.

Quadcopters with a thermal imaging camera are by no means a cheap pleasure. They are used by rescuers, military, law enforcement, repairmen, hunters and fishermen. In particular, drones with a thermal imaging camera help find living people when clearing rubble, and are widely used to search for possible fires, gas leaks from pipelines, etc. In some situations, the performance of a thermal imager may be low - for example, it is not able to clearly identify an object if its temperature coincides with the background temperature (which makes it difficult to use in hot weather). In addition, the resolution and detail of the picture, even in advanced models, is quite modest. Thermal cameras in drones can be built-in or detachable.

Full HD filming (1080p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in Full HD (1080p).

The traditional resolution of such a video is 1920x1080; this is what is most often used in drones, although occasionally there are more specific options — for example, 1280x1080. In general, this is far from the most advanced, but more than a decent high-definition video standard, such an image gives sufficient detail for most cases and looks good even on a large TV screen — 32 "and more. At the same time, achieve a high frame rate in Full HD It is relatively simple and takes up less space than higher resolution content, so Full HD shooting can be done even on aircraft that support more advanced video formats like 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion Full HD.

Camera stabilization

Stabilization system built directly into the complete drone camera.

Any stabilization system is designed to compensate for vibrations and shakes, thus providing a stable image, without shaking or sudden movements in the camera. This function slightly increases the cost of the device, but the video quality increases noticeably. On the other hand, stabilization makes it difficult to perform complex maneuvers, since its use worsens the feedback: changes in the camera image do not quite correspond to changes in the drone’s position in space. In light of this, in devices that have an acrobatic mode (see “Flight Modes”), such a system can be switched off.

Note that specifically in the camera, stabilization is most often carried out according to the electronic principle: reserve space is allocated at the edges of the matrix, and in the event of vibrations or shocks, the camera “pulls up” a fragment of the image from this reserve, keeping the image in the frame motionless. This format of operation somewhat reduces the useful area of the matrix, but is inexpensive, does not affect the weight of the camera and does not complicate its design. A more effective, but also more complex and expensive option is a built-in optical stabilizer, which uses a lens with a moving lens system.

In addition, another method can be used to stabilize the image - a mechanical gimbal stabilizer. However, such a gimbal is not part of the c...amera, so its presence is specified separately (see below). At the same time, some copters provide both functions at once - both built-in stabilization and gimbal; this ensures maximum efficiency.

Sensors

Additional sensors provided in the design of the quadcopter.

— Heights. A sensor that determines the flight altitude of the machine. Such sensors can use the barometric or ultrasonic principle of operation. In the first case, the height is measured by the difference in atmospheric pressure between the current point and the starting point (that is, the sensor determines the height relative to the initial level); in the second, the sensor acts similarly to sonar, sending a signal to the ground and measuring the time it takes to return. Barometric sensors are not very accurate, but they work well at high altitudes — tens and hundreds of metres; ultrasonic — on the contrary, they allow you to accurately manoeuvre at low level flight, but lose effectiveness as you climb. However, in some advanced models, both options may be provided at once. Data from the height sensor can either be used by the quadcopter “independently” (for example, when hovering or automatically returning), or transmitted to the operator to the remote control or smartphone.

Optical. A sensor that allows the quadcopter to "see" the environment in certain directions. One of the simplest variants of such a sensor is a downward-facing camera that allows the device to “copy” the surface under which it flies. Due to this, the machine, for example, can navigate indoors, where the signal from GPS satellites does not reach. In...addition to such a chamber, "eyes" can also be provided from different sides of the machine. Note that optical sensors have certain limitations in their use — for example, they lose their effectiveness on dark, shiny or uniform (without noticeable details) surfaces, as well as at high speeds.

GPS module. A sensor that receives signals from navigation satellites (GPS, in some models also GLONASS) and determines the current geographical coordinates of the machine. Specific ways of using position data can be different: returning home, flying by waypoints (see below), recording a flight route, etc.

Gyroscope. A sensor that determines the direction, angle and speed of the machine's rotation along a specific axis. Modern technologies make it possible to create full-fledged three-axis gyroscopes of very compact dimensions, and it is with such modules that quadcopters are usually equipped. On the basis of gyroscopes, automatic stabilization systems usually work, returning the car to a horizontal position after a gust of wind, collision with an obstacle, etc. At the same time, such equipment affects the cost of the device, and in some cases (for example, during piloting), automatic stabilization is more of a hindrance than a useful feature. Therefore, some low-cost, as well as advanced aerobatic quadcopters, are not equipped with gyroscopes.

Range

The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.

When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to 5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.

Video transmission frequency

The frequency of the radio channel used to transmit the video stream from the camera on board the drone to the receiving device: smartphone or tablet, control panel or pilot’s video glasses. The most common frequencies are 2.4 GHz and 5.8 GHz; video data transmission at a frequency of 1.2 GHz is less common. This parameter directly affects the quality and stability of the video signal, depending on environmental conditions, as well as accompanying interference from other devices. Thus, for receiving video from FPV drones, the most preferable frequency is 5.8 GHz, which is due to a wide selection of channels and high data transfer rates.

Information display

The presence of an information display on the quadcopter control panel.

Note that this feature should not be confused with the FPV broadcast screen (see below). The information display is usually a simple segment display capable of displaying numbers, individual letters, and, on some models, a limited set of special icons. However, even such equipment significantly expands the capabilities of the remote control and allows the operator to receive a lot of additional information: battery charge, signal level, range, flight altitude, etc. At the same time, the auxiliary screen is inexpensive and can be used even in low-cost models. And in advanced drones, it may well complement the broadcast display: separating data into different screens contributes to ease of control.

Remote control power source

The number and type of batteries used in the quadcopter control panel.

— AA. Replaceable batteries, colloquially known as "AA batteries". They are available not only in the form of disposable batteries, but also in the form of rechargeable batteries, are produced under various brands that differ in price and quality (which provides freedom of choice), and finding such elements on the market is usually not a problem. The power and capacity of AA elements are relatively small, but in most cases they are quite enough for normal operation of the transmitter for quite a long time. Usually, modern consoles require several of these batteries; in the most high consumption this number can reach 8.

— AAA. Also known as "pinky". In fact, a smaller version of popular AA elements (see above); has the same key features, but differs in more compact dimensions and, as a result, somewhat reduced power. This option is typical for low-cost class models, with a small range of the remote control.

— 3s. This marking does not describe the size of the battery, but its operating voltage and technology. It denotes a lithium-ion or lithium-polymer battery (see "Battery type"), assembled from three cells with a standard voltage of 3.7 V each, and thereby delivering an operating voltage of 11.1 V. The advantages of such a power supply are high power and capacity, which allows you to use the remote control for a long time without recharging. At the same time, batteries of thi...s type can vary significantly in size and weight, and not every model marked 3s will be compatible with the remote control. In addition, finding a spare battery is more difficult than a set of cells of a standard size.

— Proprietary battery. Powered by an original battery that is not related to any of the options described above. Such batteries can be much more powerful than replacement cells, making them well suited even for remotes with high power consumption. Their main advantage is the difficulty with quick replacement: the design of the remote control is at best poorly suited for this, and at worst the battery is generally non-removable. Also, finding the right replacement battery can be a major hassle.
JJRC X7 often compared
JJRC X5 often compared