Dark mode
USA
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison DJI Mavic 2 Zoom vs DJI Mavic Pro

Add to comparison
DJI Mavic 2 Zoom
DJI Mavic Pro
DJI Mavic 2 ZoomDJI Mavic Pro
Compare prices 4
from $1,699.00 
Outdated Product
User reviews
0
0
0
1
0
0
0
5
TOP sellers
Main
Gesture control. A set of sensors for flight safety. ActiveTrack 2.0 mode. Shooting 4K HDR video. 4 shooting modes Timelapse and panoramic shooting.
DJI Mavic 2 Zoom differs from DJI Mavic 2 Pro in camera: it has 13MP (Pro version is 20MP), 4x, quick-change zoom (including 2x optical: 24 and 48mm), dynamic perspective, transtrav mode and speed focus 40% faster
4K video camera. Long flight range. Gesture control. 3-axis stabilization system. A set of sensors for flight safety. Compact dimensions.
Mavic Pro Fly More Combo differs from Mavic Pro in package contents (quadcopter battery x3, propellers x5 sets, car charger, quadcopter bag, battery charging hub)
Flight specs
Range of flight18 km
Maximum flight time31 min27 min
Horizontal speed72 km/h65 km/h
Ascent / descent speed18 km/h
Wind impedance10 m/s
Camera
Camera typeremovableremovable
Matrix size1/2.3"1/2.3"
Aperturef/2.8 – f/11
Number of megapixels12 MP12.71 MP
Photo resolution4000x3000 px4000x3000 px
HD filming (720p)1280x720 px1280x720 px 120 fps
Full HD filming (1080p)1920x1080 px 120 fps1920x1080 px 96 fps
Quad HD filming2688x1512 px 60 fps2720x1530 px 30 fps
Ultra HD (4K)3840x2160 px 30 fps3840x2160 px 30 fps
Viewing angles83°78.8°
Time lapse
Mechanical stabilizer suspension
Camera with control
Live video streaming
Memory card slot
Flight modes and sensors
Flight modes
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
flyby GPS points
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
flyby GPS points
Sensors
GPS module
heights
optic
gyroscope
GPS module
heights
optic
gyroscope
Obstacle sensors
bottom
top
on the sides
front
back
bottom
 
 
front
 
Control and transmitter
Controlremote control onlyremote control and smartphone
Range8000 m7000 m
Control frequency2.4 and 5.8 GHz2.4 GHz
Smartphone mount
Information display
Remote control power sourcebatterybattery
Motor and chassis
Motor typebrushlessbrushless
Number of screws4 pcs4 pcs
Screw diameter211 mm
Foldable design
Battery
Battery capacity3.85 Ah3.83 Ah
Voltage15.4 V11.4 V
Battery model4S3S
Batteries in the set1 pcs1 pcs
General
Body backlight
Materialplasticplastic
Dimensions322x242x84 mm335 mm
Dimensions (folded)214x91x84 mm198x83x83 mm
Weight905 g743 g
Color
Added to E-Catalogaugust 2018september 2016

Range of flight

The distance that a quadcopter can travel in the air on one full battery charge. Simply put, this is the drone's range in kilometers. Note that smaller, lighter drones tend to have a more limited flight range compared to larger, more powerful models. In the latter, it can reach 30 km or more. Also, the maximum flight distance is often influenced by weather factors and the load carried by the copter.

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

Ascent / descent speed

The speed at which the quadcopter rises up in the air or descends to the ground. Recreational, photo and video models tend to have more moderate climb/descent speeds, while professional or racing drones can rise and fall much faster. This indicator can be used to evaluate how quickly the copter can rise to a height for filming or, if necessary, avoid obstacles, and a high descent rate will be useful if the drone needs to be returned to the ground quickly and safely.

Wind impedance

The ability of a quadcopter to maintain and maintain stable flight parameters in windy weather. In this column, it is customary to indicate the wind force in meters per second, which ensures trouble-free takeoff and landing of the drone within the permissible wind speed. Directly in flight, copters can overcome the resistance of even faster winds. But takeoffs and landings with wind strength above the designated level are fraught with unpredictable movements of the drone, loss of control and an increased risk of emergency situations.

Aperture

Aperture - a characteristic that determines how much the camera lens attenuates the light flux passing through it. It depends on two main characteristics - the diameter of the active aperture of the lens and the focal length - and in the classical form is written as the ratio of the first to the second, while the diameter of the effective aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.

Number of megapixels

Resolution of the matrix in the standard camera of the quadrocopter.

Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.

Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.

HD filming (720p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in HD (720p).

HD 720p is the first high-definition video standard. Notably inferior to Full HD and 4K formats in terms of performance, it nevertheless provides pretty good detail without significant demands on the camera and processing power. Therefore, HD support is found even in relatively inexpensive copters. And in high-end models, it can be provided as an addition to more advanced standards.

In drones, HD cameras typically use the classic 1280x720 resolution; other, more specific options are practically non-existent. As for the frame rate, the higher it is, the smoother the video turns out, the less movement is blurred in the frame. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion HD.

Full HD filming (1080p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in Full HD (1080p).

The traditional resolution of such a video is 1920x1080; this is what is most often used in drones, although occasionally there are more specific options — for example, 1280x1080. In general, this is far from the most advanced, but more than a decent high-definition video standard, such an image gives sufficient detail for most cases and looks good even on a large TV screen — 32 "and more. At the same time, achieve a high frame rate in Full HD It is relatively simple and takes up less space than higher resolution content, so Full HD shooting can be done even on aircraft that support more advanced video formats like 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion Full HD.
DJI Mavic 2 Zoom often compared
DJI Mavic Pro often compared