USA
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Synthesizers

Comparison Casio CT-S200 vs Casio CT-X700

Add to comparison
Casio CT-S200
Casio CT-X700
Casio CT-S200Casio CT-X700
Compare prices 41Compare prices 1
TOP sellers
Typesynthesizer (rompler)synthesizer (rompler)
Keys
Number of keys6161
Sizefull sizefull size
Mechanicspassiveactive
Sensitivity adjustment
Rigiditysemi-weighted
Specs
Polyphony48 voices48 voices
Built-in timbres400 шт600 шт
Auto accompaniment
Accompaniment styles77 шт195 шт
Custom styles10 шт
Learning mode
Metronome
Sequencer (recording)
Built-in compositions
Effects and control
Timbres layering
Keyboard split
Octave shift
Arpeggiator
 /100/
Reverberation
Chorus
Transposition
Fine tuning
Connectors
Inputs
mini-Jack (3.5 mm)
mini-Jack (3.5 mm)
Connectable pedals1 шт
Outputs
USB to host (type B)
headphones
USB to host (type B)
headphones
In box
In box
music stand
PSU
 
 
General
Built-in acoustics4 W5 W
Number of bands11
Displaymonochromemonochrome
Autonomous power supplyaA batteries
aA batteries /6 pcs/
Operating hours16 h
Dimensions (WxHxD)930x73x256 mm948x109x350 mm
Weight3.3 kg4.3 kg
Color
Added to E-Catalognovember 2019february 2018

Mechanics

Type of action used in synthesizer keys.

— Passive. The simplest type of mechanics, when each key is, in fact, a “switch” for its note: it only turns the sound on and off, while the volume of this sound does not depend on the strength and intensity of pressing. Passive keyboards usually have unweighted, less often semi-weighted hardness (see below). Their main and, perhaps, the only advantage is their low cost, due to the simplicity of design. At the same time, the capabilities of such tools are very limited, and even when training, it is recommended to use them only at the very initial stages. As a result, passive mechanics are used exclusively in the simplest low-cost-level synthesizers, which are more suitable for the role of a toy for entertainment, rather than a full-fledged instrument.

— Active. A mechanic that provides a relationship between volume and pressing force: the harder the key is pressed, the louder and sharper the sound will be. Most often combined with semi-weighted, occasionally unweighted hardness (see below). Such keys already make it possible to control the dynamics of each note: select its volume "on the fly", highlight accents, use special techniques, etc. This feature is especially important in training, when you need to train to control the effort on each individual finger. Active mechanics are highly recommended even for an inexpensive synthesizer, and for a mid-range instrument it is almost man...datory, as well as for serious learning. At the same time, many models may provide sensitivity adjustment, or even a complete switch to passive mode (for example, to simulate some instruments).

— Hammerhead. The most advanced kind of mechanics. Like the active one, it provides volume control depending on the force of pressing, but it fundamentally differs in response: hammer action is used only in weighted keyboards (see "Rigidity"), and the feeling when playing it is close to playing on a real piano. The degree of approximation, however, can be different — some models are indistinguishable in sensations from the piano, in others the mechanics are simpler. However, anyway, such features are not cheap, despite the fact that the real need for a "piano" response is extremely rare. As a result, hammer action keyboards are found mainly among top-class instruments, mainly workstations (see "Type") with full-size keyboards for 88 keys.

Sensitivity adjustment

Ability to change the sensitivity of active mechanics (see above) in the synthesizer.

This function allows you to adjust the intensity of the key's response to pressing. Simply put, the higher the sensitivity, the louder and sharper the sound will be, with the same pressing force. This allows you to change the characteristics of the instrument's sound.

Also in synthesizers with this function, it is often possible to completely turn off the active mechanics and play on a “passive” keyboard. This can be useful for making certain voices, such as harpsichord or organ, sound realistic.

Rigidity

Unweighted. Keys with a very low pressing force, literally "failing" under the fingers. This option is well suited for inexpensive synthesizers with passive mechanics (see above), but is rarely used in active models — a small resistance force makes it difficult to choose the optimal pressing force.

— Semi- weighted. Medium-strength keys, not up to the hardness of a full-fledged piano, but showing noticeably more resistance than unweighted ones. This variant is most popular among instruments with active mechanics (see above) — the force on the keys provides adequate feedback and at the same time playing such an instrument does not cause any special difficulties even for those who previously dealt only with unweighted keyboards.

Weighted. Keys with high actuation force, comparable to that of a classical piano. Used only in professional hammer action instruments (see above) — high rigidity is a must for such mechanics (more precisely, for the response that it must provide).

Built-in timbres

The number of built-in sounds provided in the synthesizer.

The number of timbres is often described as the number of instruments that a given model can imitate. However, this is not entirely true — rather, this parameter can be called "the number of instruments and sound effects." For example, the same instrument — an electric guitar — with different "gadgets" (distortion, overdrive) will sound differently, and in the synthesizer each such gadget will be considered a separate timbre. The “drums” timbre usually combines different types of drums and other percussion instruments — in other words, it allows you to portray both the “bass drum” and the cymbals without switching settings, just by pressing the desired keys. And some timbres may not have analogues among real instruments at all.

The more built-in timbres, the more extensive the possibilities of the synthesizer, the more diverse the sounds that can be extracted from it. At the same time, in high-end models like workstations (see "Type"), this number can reach 1000 or even more.

Accompaniment styles

The number of auto accompaniment styles (see above) originally provided in the synthesizer, in other words, the number of accompaniment options available to the user.

The more extensive this set, the higher the probability of finding among these melodies suitable options for a particular case. At the same time, the abundance of styles in itself is not yet a 100% guarantee that among them there will be a suitable one, especially since different synthesizer models can differ markedly in a specific set of melodies. So the list does not hurt to clarify before buying. Also note that the situation can be corrected by user styles (see below) — many synthesizers with auto accompaniment support them.

Custom styles

The number of user auto accompaniment styles supported by the synthesizer, in other words, the number of additional styles that can be stored in memory in addition to the built-in ones. Note that styles can have different volumes (depending on the number of notes used), so this parameter often turns out to be not exact, but only an average-approximate one.

Modern synthesizers may have a fairly extensive set of built-in auto accompaniment styles (see above), but even the richest set may not contain the desired melody. Thus, many models allow you to supplement the standard list with custom melodies. The addition methods themselves can be different: in some models, these melodies need to be downloaded from external media, in others they can even be composed manually. Nevertheless, the presence of user styles allows you to expand the range of auto accompaniment melodies, moreover, at the request of the user himself.

Learning mode

The presence of a learning mode in the design of the synthesizer.

The purpose of this function is clear from the name. It is most often based on the following principle: the synthesizer itself tells the student which keys to press, displaying the keyboard on the display or highlighting the necessary keys using the backlight (if available, see above). Of course, at different levels of learning, the format of such prompts will also be different: for example, at the very beginning, the synthesizer highlights the necessary notes until they are pressed, and at the final stage it highlights them at the tempo at which you need to play the melody, and evaluates the accuracy of the student pressing the desired keys. There are also other features and nuances of learning — for example, the mode of separate learning of parts for the left and right hands, when the instrument itself plays one part and tells the student how to play the second. In addition, a metronome function is practically mandatory for a synthesizer with this mode (see below).

Regardless of the specific functionality, this mode will be very useful for those who are just developing their keyboard playing skills.

Timbres layering

The ability to overlay different timbres of the synthesizer sound on top of each other. This creates the effect of the sound of two (or even more) instruments at once — for example, piano and violin. At the same time, in advanced models, it may be possible to set different settings for different timbres so that the sameness of the extracted notes is not so noticeable — for example, the same "violin" can be set to smooth transitions between notes, while on the "piano" they will sound jerky.

Keyboard split

Possibility of dividing the keyboard of the synthesizer into two parts, each of which is responsible for its own timbre of sound. Thus, on one keyboard, you can play two "instruments" at once in real time — for example, accompany the solo part of the violin with chords of a string orchestra. At the same time, unlike auto accompaniment (see above), all notes are taken by the musician himself, without relying on the automatic settings prescribed in the programme.

Usually, several “split keyboard” combinations are pre-written in the synthesizer’s memory, however, some models allow you to separately select a timbre for each half, at the discretion of the musician.
Casio CT-S200 often compared
Casio CT-X700 often compared